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ABSTRACT 18 

 19 

Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of 20 

feeding status on human adipose tissue responses to exercise has never been studied.  Ten 21 

healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 22 

10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions 23 

in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before 24 

exercise. Blood samples were collected at regular intervals to examine changes in metabolic 25 

parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline 26 

and one hour post-exercise to examine changes in adipose tissue mRNA expression and 27 

secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, 28 

HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to 29 

FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by 30 

feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not 31 

different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or 32 

adiponectin in response to exercise. This is the first study to show that feeding prior to acute 33 

exercise affects post-exercise adipose tissue gene expression and we propose that feeding is 34 

likely to blunt long-term adipose tissue adaptation to regular exercise.  35 

 36 
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INTRODUCTION  38 

It has become clear in the last 10 years or so that adipose tissue plays an active role in many 39 

physiological processes and pathological states (74, 78) and dysfunction within this tissue is 40 

characterised by tissue-specific insulin resistance, local inflammation, fibrosis, and the 41 

abnormal secretion of adipokines (36). Adipose tissue secretes dozens of mediators including 42 

the archetypal adipokines, adiponectin and leptin (16, 38, 46). Adiponectin is exclusively 43 

derived from adipose tissue and circulates in high concentrations (10−20 mg·L-1). In other 44 

cases, the quantitative amounts secreted by adipose can be substantial, for example, 45 

subcutaneous adipose contributes up to a third of circulating interleukin-6 (IL-6) (45). 46 

 47 

Feeding has a pronounced effect on the whole-body metabolic responses to exercise and 48 

reduces the contribution of fat towards metabolism (3, 23, 77). In addition, feeding influences 49 

the skeletal muscle responses to various forms of exercise (9, 10, 13). For example, pyruvate 50 

dehydrogenase kinase isozyme 4 (PDK4) is significantly up-regulated in muscle with 51 

exercise in fasted but not fed conditions (10). Other feeding-related changes in gene 52 

expression in muscle after exercise have been reported including altered expression of 53 

glucose transporter type 4 (GLUT4), PDK4, fatty acid translocase/CD36 (FAT/CD36), 54 

carnitine palmitoyltransferase 1 (CPT-1), uncoupling protein-3 (UCP3) and AMP-activated 55 

protein kinase (AMPK) (9). Collectively, therefore, there is strong evidence that feeding 56 

affects the responses to exercise in skeletal muscle. Adipose tissue plays a crucial role during 57 

exercise (18) and this led us to speculate that pre-exercise feeding may also affect the adipose 58 

tissue responses to acute exercise. 59 

 60 

During moderate intensity exercise, adipose tissue provides much of the energy for working 61 

skeletal muscle through the mobilisation of stored triacylglycerol (27). Exercise also initiates 62 
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a number of other responses in adipose tissue such as increased blood flow and altered 63 

expression of various adipokines within abdominal subcutaneous adipose tissue (66). It is 64 

possible that these acute exercise-induced changes could be part of the mechanism through 65 

which exercise improves health (66). However, all prior studies of adipose tissue responses to 66 

exercise in humans have been conducted in the fasted state (8, 19, 25, 31, 32, 39). The effect 67 

of feeding status on the response of human adipose tissue to exercise has never been studied. 68 

This is despite the fact that feeding has a profound effect on adipose tissue (1, 30) and that we 69 

spend the vast majority (~70%) of a 24-h period in a fed state (58). Consequently, the aim of 70 

the present study was to investigate whether feeding influences the adipose tissue responses 71 

to exercise.  72 
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METHODS 73 

Ethical approval  74 

The protocol was approved by Bristol Research Ethics Committee (REC reference number: 75 

13/SW/0020) in accordance with the declaration of Helsinki. This trial is registered at 76 

ClinicalTrials.gov (ID: NCT02870075). All participants provided verbal and written 77 

informed consent before taking part. 78 

 79 

Experimental design  80 

Ten men aged 18 to 35 years with increased central adiposity were recruited via local 81 

advertisement. Participants attended the laboratory on three occasions for initial assessment 82 

of maximum oxygen uptake (V̇O2max) and two subsequent main trials. The trial days involved 83 

walking for 60 min at 60% V̇O2max under either FASTED or FED conditions in a randomised, 84 

counterbalanced design separated by a 3−4 week wash-out period. This intensity and duration 85 

of exercise was selected because it relies heavily on fatty acids mobilised from adipose tissue 86 

and also because it is the type of exercise recommended in recent position stands (20, 27). 87 

Blood and adipose tissue were sampled at baseline and after exercise to examine the impact 88 

of prior feeding. There are no data regarding how different dietary status (fasted versus fed) 89 

affects the adipose responses to exercise. However, a previous study using a similar meal 90 

showed that feeding had an enormous effect on the use of lipid during exercise – and thus this 91 

indicates that the role of adipose tissue during exercise would be potentially very different (3, 92 

77). Based on these results, in order to see an effect on lipid oxidation during exercise with 93 

95% power and 5% alpha, we would require between 6−8 participants. We recruited ten men 94 

to account for greater variability in other outcome measures. 95 

 96 

 97 
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Inclusion and exclusion criteria 98 

To be eligible to take part, participants were required to be overweight with a waist 99 

circumference of 94−128 cm (75). Participants were also required to be weight stable (63) for 100 

at least 3 months (mass stable ± 3%). Participants completed a health questionnaire to 101 

exclude any existing cardiovascular and metabolic diseases and a Physical Activity Readiness 102 

Questionnaire (PAR-Q) to make sure that participants were able to exercise safely. 103 

Individuals taking any medications known to influence lipid/carbohydrate metabolism or 104 

immune function and smokers were excluded. A summary of participants’ physical 105 

characteristics is shown in Table 1.  106 

 107 

Table 1.  Participant physical characteristics (n = 10) 108 

Characteristics Mean ± SD  

Age (years) 26 ± 5 

Body mass (kg) 102.4 ± 10.6  
Waist circumference (cm) 105 ± 10  

Hip circumference (cm) 115 ± 6  

Body mass index (kg·m-2) 30.2 ± 3.7  

Fat in L1-L4 region (kg) 3.4 ± 1.5  

V̇O2max (mL·kg-1·min-1) 42.4 ± 6.4  

Systolic blood pressure (mmHg) 132 ± 21  

Diastolic blood pressure (mmHg) 73 ± 12  

Fat in L1-L4 regions was determined using DEXA as previously described (22).  109 

 110 

 111 

 112 

 113 

 114 
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Pre-trial assessments  115 

 116 

V̇O2max measurement  117 

An incremental continuous treadmill test until the point of volitional fatigue was used to 118 

determine V̇O2max. For most participants, a treadmill speed of 4 km·h-1 and gradient of 8.5% 119 

was appropriate. This grade was maintained and the speed was increased by 1 km·h-1 after 120 

every 3 min stage. One minute expired air samples were collected into Douglas bags (Hans 121 

Rudolph, MO, USA) and rate of perceived exertion (RPE) and heart rate were measured in 122 

the final minute of each stage and also at the point of volitional fatigue, defined as when the 123 

participant indicated that only 1 min remained until fatigue. Samples were analysed for 124 

relative expired fractions of oxygen and carbon dioxide (Servomex, Crowborough, UK) and 125 

the total volume within the bag was measured using a dry gas meter (Harvard Apparatus, 126 

Kent, UK).  127 

 128 

Physical activity assessment  129 

As part of the pre-trial assessments, participants wore a combined heart rate/accelerometer 130 

monitor for one week to assess their habitual physical activity energy expenditure (Actiheart, 131 

Cambridge Neurotechnology Ltd., Cambridge, UK). This was attached to the chest via 2 132 

adhesive ECG pads for 24 h per day except for during showering/bathing/swimming (65). 133 

 134 

Body composition analysis 135 

Body mass was measured using digital scales following an overnight fast and post-void 136 

(TANITA corp., Tokyo, Japan). Waist and hip circumference was assessed according to 137 

World Health Organisation guidelines (75). Body composition was determined using Dual 138 

Energy X-ray Absorptiometry (DEXA; Discovery, Hologic, Bedford, UK). Abdominal 139 
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subcutaneous and visceral adipose tissue mass was estimated from a central region between 140 

L1-L4 (22).  141 

 142 

Trial days 143 

In the 72 h prior to each main trial, participants were asked to refrain from performing any 144 

strenuous physical activity and from consuming alcohol/caffeine for 48 h prior to the main 145 

trials. A dietary record was completed 48 h before the first main trial and participants 146 

replicated this diet prior to their second main trial.  147 

 148 

On main trial days, participants arrived at the laboratory between 8 and 9 am following a 12 h 149 

fast. After anthropometric measurements, participants rested on a bed for 15 min, followed by 150 

four 5-min expired gas sample collections to determine resting metabolic rate (RMR) (5, 11) 151 

using substrate oxidation under resting conditions (17). During exercise alternative equations 152 

were used (28).  153 

 154 

After RMR assessment, a cannula was inserted into an antecubital forearm vein and a 155 

baseline venous blood sample was taken and allocated into tubes with either 156 

ethylenediaminetetraacetic acid (EDTA) or serum separation beads (Sarstedt Ltd, Leicester, 157 

UK). Plasma samples were centrifuged immediately at 3,465 g at 4 °C for 10 min. Serum 158 

samples were left for 45 min to coagulate before centrifugation. Subcutaneous adipose tissue 159 

samples (~1 g) were taken under local anaesthetic (1% lidocaine) from the area around the 160 

waist approximately 5 cm lateral to the umbilicus with a 14 G needle using an aspiration 161 

technique (72) followed by adipose tissue cleaning and processing as described previously 162 

(67).  163 

 164 
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Participants then either consumed a meal (FED) or remained fasting (FASTED) and cannula-165 

derived venous blood samples were taken every 15 min for the following 60 min. A further 166 

blood sample was collected at 120 min immediately before the walking protocol. In both the 167 

FASTED and FED treatments, participants walked on the treadmill at 60% V̇O2max for 60 168 

min and one minute of expired air samples, RPE and heart rate were collected at 5, 20, 40 and 169 

60 min. After finishing exercise, another blood sample was immediately collected and 170 

participants then rested for a further 60 min. At this point, a second adipose tissue and final 171 

blood sample were taken. 172 

 173 

Meal 174 

The meal in the FED trial was the same as previously described in detail (7). The 175 

composition of the meal was selected to reflect typical breakfasts in the UK (7). The amount 176 

was normalised to resting energy requirements (7). Briefly, the total energy provided was 648 177 

± 115 kcal (carbohydrate 120.1 ± 21.3 g, fat 12.7 ± 2.3 g and protein 20.9 ± 3.7 g). The meal 178 

included white bread (Brace’s thick white), cornflakes (Kellogg’s cornflakes), semi-skimmed 179 

milk (Sainsbury; British semi skimmed milk), orange juice (Sainsbury; 100% pure squeezed 180 

smooth orange juice), spread (Unilever; I can’t believe its not butter), jam (Sainsbury; 181 

strawberry jam) and sugar (Sainsbury; British white granulated sugar). Participants were 182 

asked to consume the meal within 15 min. In the FASTED trial, participants sat quietly for a 183 

15-min period. 184 

 185 

Adipose tissue gene expression and culture 186 

After cleaning and mincing the adipose tissue biopsy sample, one portion of adipose tissue 187 

(approximately 200 mg) was immediately homogenised in 5 mL TRIzol (Invitrogen, Paisley, 188 

UK) in an RNase/DNase-free sterile tube (Invitrogen, Paisley, UK) and stored at −80 °C 189 
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before mRNA gene expression and protein analysis. The remaining adipose tissue was used 190 

for culture and four ~100 mg portions were placed in sterile culture plates (Nunc, Roskilde, 191 

Denmark) with endothelial cell basal media (ECBM) (Promocell, Germany) containing 0.1% 192 

fatty acid-free bovine serum albumin 100 U·mL-1 penicillin and 0.1 mg·mL-1 streptomycin 193 

(Sigma-Aldrich, Gillingham, UK). Adipose tissue was incubated with a final ratio of 100 mg 194 

tissue per 1 mL ECBM media for 3 h (68)  at 37 °C in a 5% CO2 and 95 ± 5% relative 195 

humidity incubator (MCO-18A1C CO2 incubator; Sanyo, Osaka, Japan). After the 3-h 196 

incubation, media was transferred to sterile tubes and stored at −80 °C. Adipokine secretion 197 

from adipose explants was normalised to explant adipose mass and then L1-L4 fat mass as 198 

described (67).  199 

 200 

Real-time PCR 201 

An RNeasy Mini Kit (Qiagen, Crawley, UK) was used to extract RNA from adipose tissue as 202 

described (72). Tissue samples were quantified using a Qubit 2.0 fluorimeter (Life 203 

Technologies, Paisley, UK). RNA was reversed transcribed (1 μg) to cDNA using a High 204 

Capacity Reverse Transcription Kit (Applied Biosystems, Warrington, UK). Organic phenol-205 

chloroform phase from the RNA extraction was kept for further protein analysis. Real-time 206 

PCR was performed using a StepOneTM (Applied Biosystems, Warrington, UK). Predesigned 207 

primers and probes were obtained from Applied Biosystems for the measurement of 208 

expression of interleukin 6 (IL-6) (Hs00985639_m1), adiponectin (Hs00605917_m1), leptin 209 

(Hs00174877_m1), interleukin 18 (IL-18) (Hs00155517_m1), tumour necrosis factor alpha 210 

(TNF-α) (Hs99999043_m1), monocyte chemoattractant protein-1 (MCP-1) 211 

(Hs00234140_m1), 5’ AMP-activated protein kinase (AMPK) (Hs01562315_m1 and 212 

Hs00178903_m1 combined), glucose transporter type 4 (GLUT4) (Hs00168966_m1), 213 

hormone-sensitive lipase (HSL) (Hs00193510_m1), insulin receptor substrate 1 (IRS1) 214 
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(Hs00178563_m1), insulin receptor substrate 2 (IRS2) (Hs00275843_s1), sterol regulatory 215 

element binding protein 1c (SREBP-1c) (Hs01088691_m1), pyruvate dehydrogenase kinase 216 

isozyme (PDK4) (Hs00176875_m1), peroxisome proliferator-activated receptor γ (PPARγ) 217 

(Hs01115513_m1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha 218 

(PGC-1α) (Hs01016719_m1), RAC-alpha serine/threonine-protein kinase (Akt1) 219 

(Hs00178289_m1), adipose triglyceride lipase (ATGL) (Hs00386101_m1), fatty acid 220 

translocase (FAT)/CD36 (Hs00169627_m1), forkhead box protein O1 (FOXO1) 221 

(Hs01054576_m1), hexokinase 2 (HK2) (Hs00606086_m1), PI3K-85α (PIK3R1) 222 

(Hs00933163_m1), carnitine palmitoyltransferase 1B (CPT1B) (Hs03046298_s1), The 223 

G0/G1 switch gene 2 (G0S2) (Hs00605971_m1), peptidylpropyl isomerase A (PPIA) was 224 

used as an endogenous control (48). The comparative threshold cycle (Ct) method was used 225 

to process data where ΔCt = Ct target gene − Ct PPIA. Ct target genes were normalised to an 226 

internal calibrator (lowest ΔCt for each target gene) and baseline. The Ct values for IL-6 (31 227 

out of 40 samples), TNF-α (16 out of 40 samples), and IL-18 (37 out of 40 samples) were 228 

frequently over 35 and thus these results are not included. 229 

 230 

Western blotting 231 

The adipose tissue protein fraction was isolated from the TRIzol phenol-chloroform phase 232 

following the manufacturer’s protocol (TRIzol Reagent, Life Technologies). Briefly, 1 mL of 233 

organic phase was mixed with 1.5 mL isopropanol. After mixing, the samples were incubated 234 

for 10 min at room temperature, followed by 10 min centrifugation at 12,000 g at 4 °C to 235 

pellet the protein. One millilitre of protein pellet was washed using 2 mL of 0.3 M guanidine 236 

hydrochloride in 95% ethanol for 20 min incubation followed by centrifugation at 7,500 g for 237 

5 min at 4 °C. This process was repeated 3 times. After finishing the washing procedure, 2 238 

mL of 100% ethanol was added to the protein pellet for a further 20 min incubation at room 239 
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temperature before being centrifuged. The pellet was then left to air dry for 5−10 min. Then, 240 

200 μL of 1% SDS was added to resuspended the pellet. The protein content of the samples 241 

was determined using a BCA protein assay kit (Thermo Scientific, Waltham, USA). Proteins 242 

(25 μg·lane-1) were separated by SDS-PAGE and transferred using a semidry electro-transfer 243 

method to a nitrocellulose membrane. Western blotting analysis was performed with the 244 

following antibodies: RAC-beta serine/threonine-protein kinase (Akt2)/PKBβ (Millipore) 245 

(34), AMPK (Cell Signalling Technology, USA) (72), GLUT4 (26), IRS1 (Millipore) (35), 246 

IRS2 (Millipore) (47), PDK4 (ABGENT, San Diego, USA) (29), HSL (Cell Signalling 247 

Technology, USA) (56) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 248 

(Proteintech, USA) (62). The images were acquired in an EPI Chemi II darkroom (UVP) and 249 

bands quantified using VisionWorks LS analysis software (UVP). 250 

 251 

Biochemical analysis  252 

Plasma glucose and non-esterified fatty acids (NEFA) were measured using commercially 253 

available assay kits and analyser (Daytona Rx; Randox, Crumlin, UK). Serum insulin 254 

(Mercodia, Uppsala, Sweden) and both serum and adipose media concentrations of IL-6, 255 

leptin and adiponectin (R&D systems) were measured using Enzyme-linked immunosorbent 256 

assay (ELISA). 257 

 258 

Statistics 259 

Descriptive data are presented as means ± standard deviation (SD). The variance bars on 260 

figures are presented as means with 95% confidence intervals (CI). Time series data were 261 

analysed using a two-way ANOVA (trial × time) with repeated measures irrespective of 262 

minor deviations from a normality of distribution (43) using SPSS version 22 (IBM, Armonk, 263 

NY, USA). Where significant interactions (trial × time) were found, post hoc paired t-tests 264 
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were used to determine changes over time. Analysis of gene and protein expression data were 265 

conducted using logged transformed data as previously described (72). Incremental area 266 

under curve (iAUC) was calculated for insulin, glucose and NEFA using the trapezoid 267 

method (76) and analysed using paired t-tests. Statistical significance was set at p ≤ 0.05.268 
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RESULTS  269 

Energy expenditure and substrate oxidation during FASTED and FED trials 270 

There were modest feeding-induced differences between trials for relative exercise intensity 271 

(% V̇O2max) and exercise energy expenditure (Table 2). Fat oxidation during exercise was 272 

reduced by ~45% in the FED trial (Table 2). Pre-fed resting metabolic rate (RMR) was not 273 

different (2,103 ± 418 versus 2,058 ± 365 kcal·d-1 in FASTED and FED trials, respectively). 274 

 275 

Table 2.  Physiological responses during 60 min exercise (n = 10). 276 

 FASTED FED 

Treadmill speed (km·h-1) 5.7 ± 0.7 5.7 ± 0.7 

V̇O2max (%) 59 ± 3 * 60 ± 3  

Heart Rate (beat·min-1) 155 ± 13 155 ± 14 

RPE (6−20) 12 ± 2  12 ± 2 

Energy expenditure (kcal·h-1) 746 ± 129 *  771 ± 135  

Respiratory exchange ratio  (V̇CO2:V̇O2) 0.93 ± 0.03 * 0.97 ± 0.03 

Carbohydrate oxidation (g·h-1) 147 ± 41 * 167 ± 39 

Fat oxidation (g·h-1) 16 ± 8 * 9 ± 6 

Values are means ± SD. * denotes significantly different between FASTED versus FED 277 

condition (p ≤ 0.05). 278 

 279 

Plasma glucose, NEFA and serum insulin concentrations 280 

Trial × Time interaction effects were found for blood glucose, insulin and NEFA between 281 

FASTED and FED trials (p = 0.026, p = 0.003 and p = 0.001, respectively). As expected, 282 

iAUCs for glucose and insulin were elevated for all parameters in the FED trial (p = 0.02 and 283 

p = 0.03, respectively) (Figure 1B and D). Peak glucose and insulin concentrations in the 284 

FED trial were reached 15 min post-meal (7.1 ± 0.6 mmol·L-1 and 370 ± 185 pmol·L-1, 285 
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Figure 1A and C, respectively). NEFA concentrations were lower at most time points in the 286 

FED trial (Figure 1E). 287 

 288 

[INSERT FIGURE 1 ABOUT HERE] 289 

 290 

Adipose tissue mRNA expression 291 

There was an interaction effect for adipose tissue PDK4, ATGL, HSL, FAT/CD36, GLUT4 292 

and IRS2 (all p ≤ 0.05) after exercising under FASTED versus FED conditions (Figure 2). 293 

These interaction effects are explained by divergent responses between FASTED and FED 294 

trials with a larger increase in FASTED conditions when compared to either a smaller change 295 

or a modest decrease in FED conditions (Figure 2). There was a time effect for HK2, MCP-1 296 

and PGC-1α (Figure 2). The expression of the remaining genes was not significantly 297 

different between trials or over time (Figure 2).  298 

 299 

 [INSERT FIGURE 2 ABOUT HERE] 300 

 301 

Adipose tissue protein expression 302 

There was an interaction effect for IRS2 protein expression between trials (p ≤ 0.05), 303 

showing approximately a 2-fold increase in FASTED conditions, and no change in FED 304 

conditions (Figure 3A). The change in the expression of the remaining proteins was not 305 

statistically different between FASTED and FED conditions. Representative Western blots 306 

are shown in Figure 3B. 307 

 308 

[INSERT FIGURE 3 ABOUT HERE] 309 

 310 
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Serum adipokine concentrations and adipose tissue secretion ex vivo  311 

Serum IL-6 increased (Figure 4A) and serum leptin decreased (Figure 4C) in both trials (p < 312 

0.05). There was a modest time effect for serum adiponectin (Figure 4E), although no 313 

interaction effects were identified for serum IL-6, leptin and adiponectin. Furthermore, no 314 

time or time × trial interactions were identified for ex vivo adipose explant secretion of IL-6, 315 

leptin and adiponectin in response to exercise under FASTED and FED conditions (Figure 4). 316 

 317 

[INSERT FIGURE 4 ABOUT HERE] 318 

  319 
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DISCUSSION 320 

This study presents the first evidence that feeding status alters the human adipose tissue 321 

response to acute exercise and thus feeding status has the potential to influence the long-term 322 

adaptation of adipose tissue to regular exercise.  323 

 324 

In the present study, our feeding protocol successfully manipulated systemic concentrations 325 

of glucose and insulin. In the two hours prior to exercise, there was a 168-fold and 26-fold 326 

difference in insulin and glucose iAUC, respectively. As anticipated with this study design, 327 

prior feeding increased relative carbohydrate utilisation and decreased fat oxidation during 328 

exercise (3, 23, 77). Thus, exercise in FED and FASTED trials was performed in a very 329 

different physiological state. 330 

 331 

At the gene expression level, we found that adipose tissue responded differently to moderate-332 

intensity exercise under FASTED versus FED conditions. When compared to the changes in 333 

fasted exercise conditions, feeding led to lower changes or a decrease in PDK4, ATGL, HSL, 334 

FAT/CD36, GLUT4 and IRS2 mRNA as demonstrated by interaction effects for these 335 

outcomes. Over time, acute differences in skeletal muscle gene expression with exercise 336 

conducted in the fasted versus the fed state have been proposed to contribute to diverse 337 

physiological adaptations (12, 70). Our data demonstrate that feeding status also alters 338 

adipose tissue responses to an acute bout of exercise. We have previously shown that weight 339 

loss leads to a large increase in genes such as PDK4 and HSL in adipose tissue (71) whereas 340 

overfeeding leads to a profound decrease in both PDK4 and HSL in adipose tissue (72). Thus, 341 

feeding has the potential to affect the acute adipose tissue responses to exercise and, given the 342 

important role of adipose tissue in health and the nature of these changes (66, 71, 72), we 343 
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propose that feeding before exercise blunts some of the health-related changes induced by 344 

exercise training. 345 

 346 

We found a difference in adipose IRS2 protein content between FASTED and FED exercise 347 

conditions although the other measured proteins were not affected. We should highlight that 348 

our protein measurements represent only total protein content. Repeated small changes in 349 

adipose protein synthesis are likely lead to accumulated differences and functional changes in 350 

adipose phenotype over time (6, 50). Clearly, the only way to know if the acute changes 351 

observed in the current study translate into long term differences in protein content in adipose 352 

is to examine whether chronic training conducted in the fasted versus postprandial state leads 353 

to divergent adaptations. 354 

 355 

Carbohydrate and lipid metabolism in adipose tissue 356 

A primary function of PDK4 is to regulate glucose metabolism by inhibiting pyruvate 357 

dehydrogenase complex activity. Fasting and exercise increase PDK4 mRNA expression in 358 

skeletal muscle (52, 53) and insulin suppresses PDK4 mRNA and protein content in skeletal 359 

muscle (37, 40). It is possible that insulin could be responsible for the lower adipose PDK4 360 

mRNA response in the FED trial, although higher NEFA in the FASTED trial could also 361 

have increased PDK4 expression (2, 33). Other feeding-related studies have shown that 362 

muscle PDK4 mRNA expression remained unchanged 1−4 h after exercise in the fed state 363 

(with lower NEFA concentrations), when compared with exercise in the fasted state (9, 10). 364 

Thus, exercise in the fasted state appears to increase PDK4 expression in both muscle and 365 

adipose, whereas exercise in the fed state does not. 366 

 367 



 

 19 

 

ATGL and HSL mobilise stored fat and release it into the circulation (79). In the current 368 

study, gene expression of ATGL, HSL and FAT/CD36 in adipose were all differentially 369 

expressed in FASTED and FED exercise conditions. These interaction effects are explained 370 

by responses in the FED trial being either lower or in the opposite direction to the FASTED 371 

trial. There was also greater fat oxidation during exercise in the FASTED trial. Other studies 372 

have also shown similar responses in fasted exercise with higher fat oxidation and increased 373 

skeletal muscle FAT/CD36 gene expression (9). Moreover, these findings are consistent with 374 

the previously observed increase in adipose HSL activity reported during cycling exercise, 375 

which is blunted with nicotinic acid ingestion (73). Thus, given the nature and direction of 376 

these changes, we propose that feeding blunts at least some of the exercise-induced stimulus 377 

on adipose tissue. 378 

 379 

We found GLUT4 mRNA, IRS2 mRNA and IRS2 protein were also differentially expressed 380 

in adipose in FASTED and FED exercise trials. These effects were subtle but consistent, and 381 

this also seems to indicate that exercise in a fed state will not generate the same change in 382 

pathways involved in glucose metabolism and signalling within adipose tissue as fasted 383 

exercise. Previous findings in skeletal muscle have found an increase in GLUT4 mRNA in 384 

fasted but not fed conditions after exercise (9, 10). 385 

 386 

PGC-1α mRNA is a transcriptional coactivator involved in mitochondrial biogenesis (60). 387 

Acute exercise increases PGC-1α mRNA expression in human skeletal muscle (21, 54) and in 388 

rodent white adipose tissue (64). However, the impact of feeding status and/or carbohydrate 389 

variability prior to exercise on skeletal muscle PGC-1α mRNA is controversial. Some studies 390 

indicate that PGC-1α mRNA expression is up-regulated post-exercise whether acute exercise 391 

is performed in fed or fasted conditions (10, 42) but other studies show that higher 392 
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carbohydrate availability prior to exercise blunts PGC1-α mRNA expression in skeletal 393 

muscle both at rest and post-exercise (4, 55). In the present study, the increase in adipose 394 

PGC-1α mRNA expression after exercise was unaffected by feeding status. Chronic training 395 

studies indicate that adipose PGC1-α mRNA is increased in humans (59) and rodents (64, 69) 396 

and this has also been reported to increase PGC1-α protein content and mitochondrial 397 

biogenesis in rodents (69). Whether the present results indicate an acute exercise-induced 398 

increase in mitochondrial biogenesis in human adipose tissue is plausible but unclear at the 399 

present time. 400 

 401 

Adipokines response to exercise and impact of feeding status 402 

Previous studies have shown that circulating adipokine concentrations are affected by acute 403 

exercise (8) and energy consumption during exercise alters these systemic responses (57, 61). 404 

However, evidence from studies that have manipulated feeding status prior to exercise is 405 

scarce. Zoladz et al. (80) found no difference in circulating IL-6 and leptin after a single bout 406 

of exercise, in a fed or fasted state. However, the duration of exercise lasted only 12 min and 407 

this might be insufficient to examine the notion that feeding status influences circulating 408 

adipokines. The exercise in the present study was 60 min, and we too found no evidence that 409 

pre-exercise feeding affects circulating IL-6, leptin and adiponectin. This may be due to the 410 

fact that moderate intensity exercise has only a modest effect on many of these parameters 411 

and thus there is little potential for feeding to interact with exercise and exert an effect (41). 412 

Serum IL-6 was increased over time in both fasted and fed trials in the present study, which 413 

could be partly due to the effect of exercise (51). As we did not observe changes of adipose 414 

IL-6 secretion ex-vivo, the increase in serum IL-6 might be caused by release from skeletal 415 

muscle during exercise (49), but it is also possible that reflects local production of IL-6 due to 416 

prolonged cannulation (14). 417 
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 418 

Temporal and population-specific considerations 419 

This study is the first to examine the impact of feeding on adipose tissue responses to 420 

exercise. We recruited overweight participants and this focus is a strength given that ~62% of 421 

the UK population are overweight (24). Increased adiposity has a profound effect on adipose 422 

tissue function (e.g., a down regulation of GLUT 4 mRNA (67) and reduction in postprandial 423 

adipose tissue blood flow (44)). These could be important considerations when interpreting 424 

our findings. We should also highlight that in the current study we were limited to only two 425 

adipose tissue biopsies due to a concern over potential interference from repeated sampling 426 

(15) and so we do not have a full and complete time course. For the first study of this kind 427 

and with limited sampling opportunities, a second biopsy 60 min post-exercise was 428 

considered to balance the requirement to capture pathways that rapidly change and those that 429 

are slower to respond. Subsequent studies should consider more frequent adipose sampling 430 

and/or the inclusion of additional resting trial(s). Depending on the kinetics of each response, 431 

our sample timing framework will be appropriate for some outcomes and less appropriate for 432 

others. Furthermore, in the absence of an adipose biopsy immediately prior to exercise, it is 433 

hard to establish whether some effects in the FASTED trial are due to the modestly extended 434 

fasting period or due to exercise (or the interaction between fasting and exercise). What is 435 

very apparent, however, is that exercise in FED conditions does not lead to the same changes 436 

as exercise in FASTED conditions. 437 

 438 

Conclusion 439 

This study provides the first evidence that the feeding status alters the response of adipose 440 

tissue to acute exercise. Several genes involved in lipid metabolism, insulin signaling and 441 

glucose transport were differentially expressed in adipose tissue when exercise was 442 
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performed in a fed versus fasted state with either lower or opposing responses after feeding. 443 

Given the nature and direction of these differences, we propose that feeding is likely to blunt 444 

long-term adaptations induced within adipose tissue in response to regular exercise. 445 

  446 
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Figure legends 710 
 711 
Figure 1. Glucose (A), insulin (C) and NEFA (E) concentrations in FASTED and FED 712 
trials and iAUC for glucose (B), insulin (D) and NEFA (F). n = 9 in both FASTED and 713 
FED trials (due to difficulty in cannulating one participant). Values are means ± 95% CI. # 714 
denotes significant interaction effect between FASTED and FED trials by two-way ANOVA 715 
with repeated measures (p ≤ 0.05). * denotes significantly different between FASTED versus 716 
FED trials using paired t-tests (p ≤ 0.05). The shaded box in (A), (C) and (E) denotes meal 717 
time. 718 
 719 
Figure 2. Fold changes in relative gene expression in adipose tissue under FASTED and 720 
FED trials (all n = 10, except for HSL and G0S2 n = 9 owing to Ct > 35 for one participant). 721 
The dashed line indicates baseline. Data normalised to PPIA, internal calibrator and baseline. 722 
Samples that exceeded the detectable limit (Ct > 35) were excluded from the analysis. Values 723 
are means ± 95% CI. # denotes significant interaction effect between FASTED and FED 724 
trials using two-way ANOVA with repeated measures (p ≤ 0.05). † denotes a time effect (p ≤ 725 
0.05). * comparison between baseline and 1 h post-exercise by paired t-tests (p ≤ 0.05). 726 
 727 
Figure 3. Fold changes in relative protein content in adipose tissue under FASTED and 728 
FED trials (all n = 8 due to lack of sufficient protein for two participants) (A). The dashed 729 
line indicates baseline. Data were normalised to GAPDH. Values are means ± 95% CI. # 730 
denotes significant interaction effect between FASTED and FED trials using two-way 731 
ANOVA with repeated measures (p ≤ 0.05). Representative images of Western blots in 732 
adipose tissue under FASTED and FED trials (B). IRS1/2, Akt2 and AMPK represents 733 
participant number 2 and 8. GLUT4, PDK4 and HSL represents participant number 3 and 4. 734 
 735 
Figure 4. Circulating serum IL-6 (A) leptin (C) and adiponectin (E) concentrations in 736 
FASTED and FED trials (n = 9). Ex-vivo adipose tissue explant protein secretion of IL-6 737 
(B), leptin (D) and adiponectin (F) expressed relative to L1-L4 fat mass (n = 10). Values 738 
are means ± 95% CI. The shaded box in (A), (C) and (E) denotes meal time. † denotes a time 739 
effect from two-way ANOVA with repeated measures (p ≤ 0.05). 740 
 741 
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