Central GIP signaling stimulates peripheral GIP release and promotes insulin and pancreatic polypeptide secretion in nonhuman primates.

Paul B. Higgins1,2, Robert E. Shade2, Irám P. Rodríguez-Sánchez3, Magdalena Garcia-Forey2, M. Elizabeth Tejero4, V. Saroja Voruganti5, Shelley A. Cole1, Anthony G. Comuzzie1,2, Franco Folli2,6,7,8.

1Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, US.
2Southwest National Primate Research Center, San Antonio, Texas, US.
3Department of Genetics, School of Medicine, Autonomous University of Nuevo León (Universidad Autonoma de Nuevo León), Monterrey, Nuevo León, Mexico.
4Laboratory of Nutrigenetics and Nutrigenomics, National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica-INMEGEN), Mexico City, Mexico.
5Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, US.
6Department of Medicine, Diabetes Division, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, US.
7Department of Medicine, Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo State, Brazil.
8Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.

Running title: PERIPHERAL EFFECTS OF BRAIN GIP SIGNALING

Address for correspondence:
Paul B. Higgins, Ph.D. (current)
Sichuan PriMed Biotech Ltd.
B4-501 Tianfu Life Science Technology Park
Chengdu, Sichuan, China
paulb.higgins@gmail.com

Author Contributions:
PBH: conceived and designed the study, developed technical procedures, performed experiments, interpreted results, analyzed the data, and wrote the manuscript.
RES: designed the study, oversaw and performed surgeries, developed technical procedures, performed experiments, and revised the manuscript.
IPRS: designed and performed gene sequencing and expression experiments and revised the manuscript.
MGF: performed experiments and supervised technical aspects of the study.
MET: supervised gene sequencing and expression experiments and revised the manuscript.
VSV: performed experiments and revised the manuscript.
SAC: supervised gene sequencing and expression experiments.
AGC: designed the study, interpreted results, and revised the manuscript.
FF: designed the study, analyzed the data, interpreted the results, and revised the manuscript.

Copyright © 2016 by the American Physiological Society.
ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) has important actions on whole body metabolic function. GIP and its receptor are also present in the central nervous system and have been linked to neurotrophic actions. Metabolic effects of central nervous system GIP signaling have not been reported. We investigated whether centrally administered GIP could increase peripheral plasma GIP concentrations and influence the metabolic response to a mixed macronutrient meal in nonhuman primates. An infusion and sampling system was developed to enable continuous intracerebroventricular (ICV) infusions with serial venous sampling in conscious nonhuman primates. Male baboons (*Papio* Sp.) that were healthy and had normal body weights (28.9 ±2.1Kg) were studied (n=3). Animals were randomized to receive continuous intracerebroventricular (ICV) infusions of GIP (20pmol.kg⁻¹.hr⁻¹) or vehicle prior to and over the course of a 300min. mixed meal test (15kcal/kg, 1.5g glucose/kg) on two occasions. A significant increase in plasma GIP concentration was observed under ICV GIP infusion (66.5 ±8.0 vs. 680.6 ±412.8pg/mL, p=0.04), before administration of the mixed meal. Increases in postprandial, but not fasted, insulin (p=0.01) and pancreatic polypeptide (p=0.04) were also observed under ICV GIP. Effects of ICV GIP on fasted or postprandial glucagon, glucose, triglyceride, and free fatty acids were not observed. Our data demonstrate that central GIP signaling can promote increased plasma GIP concentrations independent of nutrient stimulation and increase insulin and pancreatic polypeptide responses to a mixed meal.

KEY WORDS: GIP, brain, intracerebroventricular, nonhuman primate.
INTRODUCTION

Glucose-dependent insulinotropic polypeptide (GIP) is a 42 amino acid peptide released primarily from the enteroendocrine K-cells in response to nutrient stimulation. Although originally described for its role in gastric acid secretion (5), GIP is an important incretin peptide and an essential driver of normal postprandial insulin secretion (17). Beyond its insulinotropic and intestinal actions, GIP also has effects on adipose tissue, bone, the heart and vasculature, pancreatic α-cells, and, importantly, on the central nervous system (8).

The GIP receptor (GIPR) is expressed in multiple regions of the mammalian brain (32, 45) and immunohistochemically detected GIP has also been shown in the rat brain (36). Brain GIP action is now linked to neurotrophic effects and augmented synaptic plasticity in rodents (20-22, 29, 31, 39, 44, 53). Whether central GIP signaling can generate effects outside of the central nervous system is unclear (2, 16, 38). In support of such an action for GIP, other metabolically active intestinal peptides (6, 41) are known to generate peripheral effects through actions in the brain and, thereby, modulate metabolic function through the gut-brain axis.

A series of recent studies in a canine model has provided evidence for a brain-gut signaling pathway capable of modulating GIP concentrations in the peripheral circulation. These studies showed that plasma GIP concentrations were increased by intracerebroventricular (ICV) administration of neuropeptide Y (48), bombesin (51), and neurotensin (50) and decreased by ICV insulin (49). Earlier studies also demonstrated nutrient-independent effects of bombesin-like peptides on GIP release in enteroendocrine cell lines, suggesting an independent neural influence on GIP secretion from K-cells (35). Combined, these studies support a role for neuroregulation in peripheral GIP release and indicate the presence of an efferent signal from the brain to the gut that can modulate GIP release independent of nutrient stimulation.

We investigated whether centrally administered GIP could increase peripheral plasma GIP concentrations and influence the metabolic response to a mixed macronutrient meal in conscious healthy nonhuman primates. We present evidence that central nervous system GIP signaling generates an efferent signal that stimulates GIP release into the peripheral circulation and influences postprandial islet peptide secretion.
METHODS

Test subjects. Four healthy young adult male baboons (Papio Sp.) were originally selected for study; n=3 animals completed the study protocol. Prior to the initiation of study activities, all animals were housed in social groups in outdoor enclosures at the Southwest National Primate Research Center according to the Guide for the Care and Use of Laboratory Animals (Institute for Laboratory Animal Research, National Research Council). All animals were then transferred to a vivarium and housed in species appropriate metabolic cages and were maintained at constant room temperature and humidity in a 12:12-h light-dark cycle for the duration of the study activities. The indoor housing environment was enriched using food items, food puzzles, chewable toys, audio, and visual tools according to Association for Assessment and Accreditation of Laboratory Animal Care guidelines. A licensed veterinarian performed a standard health assessment, including a physical examination and serum chemistry and hematology profiling in all animals before their inclusion in the study. All animals were healthy with no history of medical illness. Animals were fed a standard nonhuman primate diet (5LE0 solid feed, LabDiet; PMI, St. Louis, MO. This diet contains 3.26Kcal/g with 13.8% fat, 67.2% carbohydrate [3% sugar], and 19% protein as a percentage of total energy) between 0800 and 1800 daily and had continuous access to water. All study procedures were approved by the Institutional Animal Care and Use Committee of the Texas Biomedical Research Institute, San Antonio, TX.

Tether system adaptation period. After an initial period of acclimation to the indoor housing environment, n=12 animals (initial selection pool) were evaluated for adaptation to single caging and to the presence of a tether jacket and tether coil for a period of 3 weeks. This “sham tethering” approach has been described in detail elsewhere (14). In brief, each animal was fitted to a customized cotton tether jacket which was connected to a stainless-steel coil that “tethered” the animal to the cage ceiling. During this period, the animals were assessed daily for behavior and food intake and were sedated weekly for physical and biochemical health assessments and to enable adjustments to the tethering system to ensure optimal comfort and functionality. Four animals were selected based on technician- and investigator-determined habituation to the housing environment and tether system. These animals then underwent the
following procedures in preparation for study: 1) pre-surgical stereotaxic brain coordinate identification; 2) implant of a lateral cerebral ventricular cannula; and 3) femoral vein catheterization surgery and connection of ventricular and venous lines through the system. An overview of the study is presented in Figure 1A. The experiments undertaken involved modification of an extant vascular infusion and sampling system (3, 14) to enable intracerebroventricular (ICV) infusion in alert singly caged nonhuman primates (27) and are detailed below.

Pre-surgical stereotaxic brain coordinates identification. The selected animals were prepared for ICV cannulation surgery. Each baboon was sedated with ketamine (10mg/kg, i.m.) and fitted to a stereotaxic frame (Model 1504, dog and monkey stereotaxic frame, David Kopf Instruments Inc., Tujunga, CA). The frame is designed to enable the baboon to lie in a prone position with the head raised above shoulder height. This initial fitting procedure was used to establish and record accurate coordination points for cannula implant in the left lateral cerebral ventricle of each animal. Specifically, the stereotaxic frame was adjusted so that the lower edge of the frame’s eye rods was parallel (in the same plane) to the center of the ear bars, thus establishing a horizontal plane zero reference point for each animal that was consistent with the Baboon Brain Atlas (15). Following from this, the coordinates for the exact midpoint between the ends of the ear bars were identified to establish the anterior-posterior zero-point coordinate and the lateral left-to-right zero coordinate for the brain of each animal. Animals were returned to their home cages immediately after the coordinates were identified and recorded.

Intracerebroventricular cannula implant surgery. Seven days after stereotaxic coordinate identification procedures, each animal was sedated with ketamine (10mg/kg i.m.) and transported to a surgery room for ICV implant surgery. Details of the ICV cannula implant surgery in baboons in our laboratory have been published (3, 4, 43). Anesthesia was induced and maintained with isoflurane inhalation (1.0-1.5% v/v). The stereotaxic frame was positioned according to the previously determined coordinates. Based on the identification of the region of the lateral cerebral ventricle during frame fitting, a midline incision along with blunt dissection was made to expose the cranium. A hole (5mm diameter) was drilled through the cranium at 19mm anterior to the ear bar and 1.0mm left of the midline. The z-coordinate location of the
dura was then established by lowering the tip of the cannula until it made contact with the dura. At this time, a pressure transducer (SensorMedics, Yorba Linda, CA) was connected to record hydrostatic pressure within the cannula. A sterile 0.9% NaCl solution was infused through the cannula at a rate of 5 mL/hr. as the cannula was slowly lowered in 1mm increments through the cerebral tissue. Hydrostatic pressure within the cannula was recorded in real time using a strip chart recorder. The location of the lateral cerebral was determined at the z-coordinate where hydrostatic pressure inside the cannula decreased to zero. Lateral ventricular cannula placement was then confirmed by fluoroscopic imaging of the lateral ventricular space during delivery of a 1mL bolus of iohexol (Omnipaque, GE Healthcare, Princeton, NJ) through the cannula. All cannulas were confirmed to be positioned in the lateral cerebral ventricle. The location of the lateral cerebral ventricle was between 20 to 25mm inferior to the dura in all of the animals. The cannula was then fixed in place by placing dental acrylic in and around the cranial hole. The external portion of the cannula was slowly pushed downward at a right angle and positioned parallel to the surface of the skull. To anchor the dental acrylic, self-tapping stainless steel screws were placed in the cranium next to the cannula and additional dental acrylic was added to allow sufficient coverage of the screws and the cannula. Twenty-gauge polyvinyl tubing (Tygon S54HL microbore tubing; St. Gobain, Akron, OH) was attached to the external end of the cannula and routed subcutaneously to an exit site on the lower back of the animal, the ventricular cannula line was slowly loaded with artificial cerebrospinal fluid (aCSF) and connected to a mini osmotic pump containing aCSF (Alzet, Palo Alto, CA) which was then implanted subcutaneously to maintain the patency of the ventricular infusion line and cannula prior to connection to the infusion system, as previously described (3). The cranial incision was closed with a 3-0 polyglactin suture (Vicryl; Ethicon) so that the skin completely covered the cannula and the acrylic block. The incision site for the pump was closed with a 3-0 suture (Vicryl; Ethicon). Animals were then returned to their home cages for recovery.

ICV cannula surgery perioperative medications. Thirty minutes prior to the surgical incision each animal received a prophylactic dose of Cefazolin (350 mg i.v.). Tramadol was administered intraoperatively in a continuous infusion at a rate of 150μg/kg i.v. Animals were monitored continuously for 12hours in the immediate postoperative period. Postoperatively,
the animals were dosed further with Tramadol either with the injectable or oral form twice daily and received a single dose of Zofan (2mg). Cefazolin 25mg/kg was administered i.v. twice per day for 5 days after surgery.

Femoral vein catheterization surgery. Fourteen days after the ICV cannula implant surgery was performed, a second surgery was performed to implant a catheter (5 Fr Hydrocoat; Access Technologies, Skokie, IL) in the femoral vein for sampling. Animals were sedated with ketamine HCl (10 mg/kg i.m.) and gas anesthesia was induced and maintained using isoflurane (1.0-1.5% v/v). A catheter was then implanted in the femoral vein via a skin incision over the femoral vessels in the femoral triangle of the inner thigh. This catheter was then routed subcutaneously to the midscapular region of the back to exit the skin at the location of the tether jacket backpack box and locked using a syringe containing sterile 0.9% NaCl. The osmotic pump was explanted and disconnected from the ICV line and the ICV line was also routed subcutaneously through an additional exit site made approximately 10cm superior to that of the venous line and locked using sterile 0.9% NaCl.

Venous catheter implants surgery perioperative medications

During surgery, animals were given a prophylactic analgesic (0.2 mg/kg Metacam) and prophylactic antibiotic (25 mg/kg Cephazolin). After surgery, Buprinex was administered (0.01 mg/kg q.i.d.) for 3 days and antibiotic treatment (Cephazolin 25 mg/kg b.i.d.) was continued for 7 days.

Connection of ICV infusion and venous sampling lines. After surgery the animals were returned to the home cages. While the animals remained under sedation, the venous catheter was connected through the tethering system and kept patent using a continuous heparinized saline (5U/ml) infusion from a volumetric infusion pump maintained at the top of the cage, as described previously (14). In parallel, the ICV infusion line was also routed through the tether coil to the infusion system at the top of the cage. The ICV line was kept patent using a continuous infusion of aCSF (10uL/hr) through a network syringe pump (New Era Pump Systems Inc., Farmingdale, NY) as described below. The ICV line was connected through a pressure transducer positioned inside the tether jacket backpack box at this time as has been described previously for arterial lines (3). The line dead space was also measured at this time. A 4 week
recovery period was provisioned after the femoral catheter implant surgery and prior to the initiation of the experimental period. All animals underwent detailed weekly physical, biochemical, and hematological health examinations under ketamine sedation throughout the post-surgery and experimental periods. The physical examination was conducted by a veterinarian and involved detailed inspection of the venous and ventricular line exit site. Animal behavior was observed remotely using a closed circuit network camera mounted on the wall opposite the animal’s cage. No evidence for pain, distress, or malaise was observed during the ICV infusion studies.

ICV Infusion system. We modified the aforementioned established tethering system (14)– that enables blood sampling and intravenous infusion in singly caged conscious baboons– to include an ICV line accessible from the cage exterior. As noted above, the cannula line was routed through an exit site in the lower back region and was connected through the stainless steel tether coil to the infusion apparatus at the top of the cage. A continuous infusion of aCSF at 10µL/hr was maintained through ICV infusion line using a blue-tooth-modified network syringe pump (New Era Pump Systems Inc., Farmingdale, NY) that was attached to the tether mast at the top of the cage. ICV pumps were controlled remotely using computer software (Syringe Pump Pro, TBITC Inc., Adelaide, Australia) located in a room adjacent to the animal housing rooms. To confirm patency of the ICV cannula throughout the study, data from the ICV line pressure transducer were acquired and continuously recorded using a Ponemah Physiology Platform with P3 Plus Software for Windows (LDS Test Measurement and Gould Instrument Systems, Valley View, OH). Any blockage or disconnection in the ICV line was registered as an increase or drop in line pressure, respectively. All ICV infusions were delivered through a 0.20µM syringe filter unit attached to the syringe.

Animal habituation. Extensive habituation of the animals to technician presence was conducted at regular intervals during the 4 week recovery period. Animals were fully habituated to serial blood sampling and to the mixed meal administration on two occasions per week. All experiments were performed by the same team of technicians and investigators who worked with the baboons on a daily basis throughout the entire pre-study and experimental period. One animal failed to adapt to the tether system and was removed from study before
initiation of the experimental phase. The remaining animals (n=3) adapted fully to the tether system, had normal food and water intakes, and were weight stable before initiation of the mixed-meal metabolic studies.

GIP peptide. Human GIP (1-42) peptide (Bachem, Torrence, CA) was used for ICV infusion. Peptide was added to aCSF vehicle with corrections for purity. We have found that the GIP peptide (1-42) coding region of the baboon GIP gene has 100% identity with the human ortholog. Baboon and human GIPR gene exon sequences also have a high degree of identity. The baboon predicted GIP(1-42) amino acid sequence together with GIP and GIPR interspecies comparisons are detailed in detail in Table 1.

GIP peptide continuous ICV infusion studies. Preliminary studies were undertaken to determine an appropriate dose of ICV GIP. A dose of 20pmol.kg⁻¹.hr⁻¹ was chosen for comparison to the control condition. Animals were fasted overnight. ICV infusions were undertaken on 2 occasions in each animal at 0 (aCSF control) and 20pmol.kg⁻¹.hr⁻¹, beginning 2.0hrs. before the initiation of the mixed meal tolerance tests. On each occasion, a baseline (fasted, pre-ICV infusion) venous blood sample was taken at -135mins. from initiation of the meal test (0mins) and a syringe containing the given GIP dose was loaded on the syringe pump. At -120mins., the ICV infusion was initiated remotely at a continuous infusion rate of 10µl.hr⁻¹ for each dose beginning with a 30min. priming infusion to clear the ICV line dead space. Hence, ICV infusions were timed according to measured dead space volume of each infusion line such that GIP entered the ventricles 90mins. prior to the start of the meal test. Each infusion condition was conducted one week apart and the dose order was randomized. All animals were tested in the fully conscious and alert state.

Mixed meal test. Solid mixed meals were made using peanut butter, graham cracker, and regular butter mixed to form small solid spheres of approximately 5cm in diameter. Each mixed meal was presented to the baboon in the form of 3 balls. Each complete meal contained 45% fat, 45% carbohydrate, and 10% protein as total energy and were designed to provide each baboon with 15Kcal and 1.5g of glucose per kg of body weight. As described above, all animals were exposed to the mixed meal prior to initiation of the ICV experiments.
After an overnight fast of 14 hours, baseline fasted venous blood samples were taken at -30 and -15 mins prior to administration of the mixed meal test. The meal was presented to the baboon in three pieces over a 5 min period. Consumption of each piece of the meal was observed and confirmed remotely using a networked video camera animal monitoring system. Serial venous blood samples were taken at 10, 20, 30, 45, 60, 90, 120, 180, and 300 mins. post meal presentation. The ICV infusion was continued until completion of the meal test at 300 mins.

Peptide and metabolic substrate assays. Plasma concentrations of glucose and triglyceride were determined using an ACE clinical chemistry analyzer (Alfa Wasserman Diagnostic Technologies, LLC; West Caldwell, NJ). Plasma non-esterified free fatty acids were measured using colorimetric kits (NEFA-HR, Wako Diagnostics, Mountain View, CA). Plasma insulin was determined using a DPC Immulite 1000 Analyzer (Diagnostics Products Corporation; Los Angeles, CA). Plasma glucagon was measured using a commercial radioimmunoassay (GL-32K, EMD Millipore Diagnostics, Billerica, MA). Plasma total GIP and total pancreatic polypeptide (PP) were measured in plasma using commercial ELISA kits (EZHGIP-54K and EZHPP-40K, EMD Millipore Diagnostics, Billerica, MA). All ELISA kits used were for the detection of the human forms of the peptides. Laboratory intra- and inter-assay CVs were less than 15% for all immunoassays undertaken.

Gene sequencing. Total RNA was isolated from frozen tissue (gastrointestinal and pancreas) using Trizol Reagent (ThermoFisher Scientific Walthman, MA). RNA was treated with RQ1 DNAse (Promega, Madison, WI) for 15 min at 37 °C to remove traces of genomic DNA. For the assessment of RNA purity and integrity, we used standard methods of spectrophotometry and gel electrophoresis, respectively. Complementary DNA (cDNA) was synthesized using total RNA (0.5 µg), High Capacity cDNA Reverse Transcription kit (ThermoFisher Scientific) and oligo (dT) 12 - 18 primer (ThermoFisher Scientific) in 30 µL of total reaction volume. A primer set to amplify baboon GIP and GIPR transcripts was designed using human and macaque sequences as templates. For GIP, the sense primer was: 5’-TCTGGAAGAGCTGGAAAGGA- 3’ and the anti-sense primer was: 5’-CTATTCTGGAGTGGGGCTGA-3’; while for GIPR, the sense primer was: 5’-ATTGAGTGCCTACTGCGTGC-3’ and anti-sense primer was: 5’-TACACGAACCAGACCCTTCG-3’. PCR was carried out using 100ng of cDNA, 0.4 µM of each primer, and the GoTaq PCR master mix kit
The amplification reaction was carried out in a thermal cycler (Veriti 96-well Thermal Cycler, ThermoFisher Scientific). The amplification program used was as follows: an initial denaturation step of 4 min at 94 °C, 35 cycles of 30 seconds each at 94 °C, 45 seconds at 60 °C, 90 seconds at 72 °C, and finally an elongation step of 6 min at 72 °C. The PCR products were visualized on 1.0% agarose gels stained with ethidium bromide and visualized under UV light. The amplified products were cloned in the 3.5-kb XL-TOPO vector and transformed into the electrocompetent Escherichia coli bacteria strain, One Shot® TOP10, according to the manufacturer’s specifications (Invitrogen, Carlsbad, CA). Positive clones were sequenced using Big Dye Terminator Cycle Sequencing Kit v3.1 using specific oligos and/or M13 universal primers. The reactions were analyzed in the ABI PRISM 3100 Genetic Analyzer using the Sequencing Analysis Software v5.3 (Applied Biosystems, Foster city, CA). The information obtained from the sequencing assays was subjected to a BLAST test to determine identity.

Quantitative real time PCR (qPCR). Hypothalamus and pancreatic tissues were collected in liquid N₂ during routine necropsies (colony management) in 3 baboons (not those used in the ICV infusion studies). Total RNA was extracted from the hypothalamus and pancreas samples using TRIZOL reagent (Molecular Research Center, Gaithersburg, MD), and treated with RQ1 DNAse to remove contaminating genomic DNA. The quality of the RNA was determined via UV light at 230, 260, and 280 nm, and its integrity was ascertained by staining with ethidium bromide on a 1.2% agarose gel. qPCR was carried out in the Applied Biosystems 7000 real-time PCR System. Taq-Man Gene Expression Assays (Applied Biosystems, Foster City, CA, USA) were specifically designed to amplify the GIPR and glucagon-like peptide-1 receptor (GLP1R) transcripts. The GIPR and GLP1R amplifications were performed using available commercial primers and a probe (Assay ID Hs006092_m1 and Hs00157705_m1, Applied Biosystems, Foster City, CA, USA). 18S rRNA was chosen as the internal control. Multiplex reactions consisted of 12.5 µL 2x TaqMan Universal PCR master mix, 1.25 µL of each 20x assay on demand, 1.5 µL of cDNA and water to complete 25 µL final volume. PCR parameters were 50°C for two minutes, 95°C for ten minutes followed by 50 cycles at 95°C for 15 seconds and 60°C for 1 minute. Validation experiments were performed to verify that the amplification efficiency of the control was similar to that of the target genes. A cycle threshold (CT) value in the linear range of
amplification was selected for each sample in triplicate and normalized to 18S expression levels (ΔCT).

Phylogenetic analysis. The sequences obtained from clones were aligned with the orthologous reported genes in GenBank: GIP [Rattus norvegicus: XM_008767947, Canis lupus familiaris: XM_003639272 and Homo sapiens: NM_004123] and GiPR [Rattus norvegicus: NM_012714, Canis lupus familiaris: XM_014119625 and Homo sapiens: NM_000164]) using the CLUSTAL W program. Peptide and protein sequences were derived by conceptual translation of the coding sequences.

Statistical analysis. Area under the curve (AUC) was calculated using the trapezoidal method with linear interpolation between points. The following AUC variables were analyzed: 1) total AUC- total area under the curve representing the complete integral of GIP concentrations measured over the entire experimental period of 435mins; 2) postprandial AUC- the area under the curve of the postprandial period from prior to meal administration to 300mins; and 3) postprandial iAUC- the incremental area under the curve above fasted, baseline values. All variables were transformed using Box-Cox transformations to meet assumptions of Gaussian normality prior to statistical analysis. Control condition and test condition means were compared using paired t-tests. Analyses were undertaken using XLSTAT version2015.5.01.23261 (Addinsoft). A two-tailed alpha level of 0.05 was used to determine the statistical significance in all tests.
RESULTS

Basic descriptive data are presented in Table 2. Baboons were young adult males (7-11 yrs.) with normal body weight and normal metabolic status. Body weight was stable during the testing period (Figure 1B). No behavioral abnormalities were noted during any of the experiments, although normal food was withheld during the experimental periods, food intake after all of the experimental periods was normal. Normal hematology and biochemistry values were present throughout the study period. One animal did not go forward into the experimental phase of the study because of system compatibility issues and was released from study. Data on this animal are not included and data from the remaining n=3 animals were analyzed.

Fasted GIP concentrations and GIP AUC values are presented in Table 3. ICV GIP infusion resulted in significantly higher mean fasted GIP concentrations (p=0.04). Mean±SE GIP concentrations under control and ICV GIP conditions are shown in Figure 2. The significantly higher total AUC GIP indicated that GIP remained elevated for the duration of the experimental period (p<0.05). The GIP AUC for the postprandial period was also higher under ICV GIP and but did not reach statistical significance (p=0.057). The GIP iAUC for the postprandial period was not different under ICV GIP (Table 3, p=0.45) indicating that the effect on fasted GIP accounted for the entire increased GIP response over the duration of the experimental period.

Fasted insulin and insulin AUCs are given in the first panel of Table 4. Fasted INS did not differ between control and ICV GIP conditions. Total INS AUC and postprandial insulin AUC were not significantly different between the control and stimulated conditions. However, the postprandial INS iAUC was significantly higher (48%) under the ICV GIP infusion (p=0.01, Table 4). The mean±SE INS concentrations over the experimental period in control and ICV GIP condition are shown in Figure 3A.

Fasted glucagon and glucagon AUCs are shown in the second third panel of Table 4. Fasted glucagon concentrations were unaffected by ICV GIP administration. Postprandial glucagon concentrations did not differ between control and ICV GIP conditions. Glucagon total AUC was also unaffected by the ICV GIP infusion. Mean±SE glucagon concentrations over the experimental period are shown in Figure 3B.
Fasted PP and PP AUCs are shown in the panel of Table 4. Fasted PP was higher under ICV GIP but the difference did not reach statistical significance (p=0.23). With ICV GIP infusion, PP concentrations were significantly higher (30.1% and 32.7%) across both the entire experimental period (p=0.003) and the postprandial period (p=0.037) although the incremental postprandial PP increase did not reach statistical significance (60.4%, p=0.18). Mean ±SE PP concentrations over the experimental period are shown in Figure 3C.

Glucose, triglyceride, and free fatty acid concentrations in the fasted AUCs are shown in Table 5. Neither fasted glucose, triglyceride, nor free fatty acid concentrations differed under conditions of ICV GIP and ICV aCSF. Similarly, there were no significant differences in the three variables across the experimental period or in the postprandial period.

In a separate study, GIPR and glucagon-like-1 peptide receptor (GLP1R) gene expression was quantified in hypothalamus tissues and compared to pancreas tissues collected from 3 baboons (2 female, 1 male). Transcript expression quantifications are shown in Figure 4. The GIPR transcript is expressed in the baboon hypothalamus and is present in quantities similar to that of GLP1R.
DISCUSSION

GIP exerts complex pleiotropic actions on whole body metabolism. Abundant and extensive distribution of GIP and its receptor in the brain suggests important functions of central nervous system GIP signaling. Our data demonstrate that central GIP signaling can promote increased plasma GIP concentrations independent of nutrient stimulation and increase insulin and PP responses to a meal challenge. These data provide the first evidence for peripheral metabolic actions generated by GIP signaling in the central nervous system.

Multiple studies have provided evidence that GIP functions as a signaling molecule in the central nervous system. The GIPR transcript and protein are found in multiple regions of the rat central nervous system and have also been identified in the hippocampus and temporal lobe of humans (23). Importantly, neural cells expressing GIP have also been identified in the rat brain, particularly in the olfactory bulb, hippocampus, hypothalamus, thalamus, and cerebellum (36). Available data are consistent with central GIP having neurotrophic effects together with effects on synaptic plasticity and CNS inflammation. ICV administration of GIP (1.92nmol/day) for 5 days increased proliferation of hippocampal progenitor cells (37) while acute ICV GIP administration (15nmol) preserved long-term potentiation suggesting an improvement in synaptic plasticity in response to GIP in rats (24). Chronic peripheral administration of a long-lasting GIP analog prevented the decrease in long term potentiation induced by high fat feeding in rats and improved object recognition memory and reduced oxidative stress and inflammation in both the cortex and hippocampus of mice (18, 34). Consistent with the aforementioned findings, GIPR knockout mice show a reduction in recognition and spatial learning and exhibit a reduced long term potentiation in the hippocampus (20). Therefore, effects of GIP on central nervous system function are well described.

Here we provide evidence for a brain-gut axis signal generated by central GIP signaling that promotes an increase in peripheral GIP concentrations in the absence of nutrient stimulation. Presumably, the signal is transmitted through an efferent neural pathway capable of interacting with intestinal K-cells. Consistent with our findings, brain insulin signaling has been shown to generate a signal that promotes its own secretion from the β-cell (10, 47, 49). As with insulin action in the brain, the physiologic significance of central GIP action is also unclear.
and it is not known whether circulating GIP can cross the blood brain barrier. Nevertheless, GIP analogs exerted central nervous system effects when administered peripherally to rodents, suggesting that GIP can cross the blood brain barrier (39). Studies undertaken in dogs provide strong evidence for a brain-gut signaling pathway capable of modulating GIP concentrations in the peripheral circulation. Plasma GIP concentrations were increased by intracerebroventricular (ICV) administration of neuropeptide Y (25μg bolus) independent of any nutrient stimulation (48). Furthermore ICV neurotensin (1000ng.kg\(^{-1}.hr\(^{-1}\)) and bombesin (5.4ng.kg\(^{-1}.hr\(^{-1}\)) also increased plasma GIP concentrations in both the fasted condition and under duodenal glucose stimulation (50, 51): the GIP increase in these studies was less than that observed under ICV neuropeptide Y. Overall, the ICV effects of these peptides on fasted GIP were 50-70% less than those seen in our study. Interestingly, ICV insulin reduced GIP concentrations but only during nutrient stimulation (49). The nature of the putative efferent pathway that mediates this effect remains unknown.

Our data add to the current literature on the metabolic effects of central GIP signaling. One prior study has described an effect of ICV GIP on energy balance (2). Four days of ICV GIP infusion (2nmol/day) in rats resulted in changes in the expression of genes associated with metabolic regulation in the hypothalamus, including neuropeptide Y, and led to weight loss without changes in food intake but circulating metabolic peptides were not measured (2). Our acute infusion studies were not designed to address effects of ICV GIP on body weight regulation but such studies are warranted in higher species. In support, our qPCR assays were positive for GIPR gene expression in baboon hypothalamic tissue (Figure 4). We found that hypothalamic expression of GIPR in the baboon was comparable to that of the glucagon-like peptide-1 receptor, which is known to have hypothalamic expression and function.

Our data are consistent with the presence of an efferent neural signaling system directly regulating GIP release from the intestinal enteroendocrine cells. Consistent with the increase in plasma GIP, the principal finding of the study, we also found evidence for increased postprandial plasma insulin and PP concentrations with ICV GIP infusion. An increase in PP is typically taken to reflect an increase in cholinergic input to the pancreatic islets (42). Conflicting data have been published regarding the influence of the parasympathetic nervous system on GIP release (52).
but the weight of evidence favors non-cholinergic involvement in GIP secretion. Moreover, evidence from human studies indicates that peripheral GIP administration increases PP concentrations (1, 11, 13). Therefore, the most parsimonious explanation is that the increase in PP was attributable to the increased peripheral GIP concentrations and not directly by central GIP action. Furthermore, the increase in plasma GIP was also likely to be the direct cause of the higher postprandial insulin concentrations that occurred under ICV GIP. We did not find differences in fasted nor in postprandial glucose concentrations in response to ICV GIP administration but, as shown previously (19), only small increments in plasma glucose occur in response to oral meal challenges in healthy glucose tolerant baboons and leave a very small window for detecting glucose lowering effects. The evidence we show for elevations of both PP and insulin with ICV GIP suggests that central GIP signaling was able to influence both peptides indirectly by promoting peripheral GIP release.

A weakness of our study is that we were unable to quantify whether there was any GIP spillover from the CSF during our ICV infusion. Our ICV dose of GIP (100ng.kg\(^{-1}\).hr\(^{-1}\) or 20pmol.kg\(^{-1}\).hr\(^{-1}\)) was chosen based on assessments of ICV peptide administration to nonhuman primates, dogs, and rodents. The chosen dose was approximately one order of magnitude less than the typical ICV dose administered in the aforementioned rodent studies (2, 37). For example, the dose of ICV GIP administered to rats by Nyberg et al. was 14 times greater than the dose we used in baboons after accounting for body weight and hence, ventricular and CSF volume differences (37). In humans, a direct intravenous infusion of GIP at a dose 3 times that chosen in our study was required to raise plasma total GIP concentrations up to a maximum of ≈50% of those seen in our study (30). Furthermore, in a study by Chia et al. (12) in humans, a 12-fold higher i.v. GIP infusion rate than the ICV infusion rate we used in baboons resulted in a 10-fold increase in plasma total GIP from baseline which is comparable to the plasma GIP increase that we observed in baboons. Therefore, it is unlikely that our dose of GIP was large enough and unlikely that it would have entered the vasculature fast enough to explain the rate and extent of the plasma GIP increase observed. Furthermore, a 2.0pmol.kg\(^{-1}\).hr\(^{-1}\) ICV dose of GIP, used during preliminary experiments, resulted in a GIP increase of ≈30% of that caused by the 20pmol.kg\(^{-1}\).hr\(^{-1}\) dose and is consistent with a dose response to ICV GIP (data not shown).
Nonhuman primates are important intermediary models for the translation of rodent findings to humans. Given the particular importance of nonhuman primates as translational models for metabolic diseases (7, 40), investigations to confirm that gut-brain and brain-gut signaling pathways found in rodents are operative in nonhuman primates is of considerable importance. The baboon model is well-established in the study of all stages of metabolic disease (9, 19, 25, 26, 28, 46). Our ICV infusion methodology advances previously described ICV infusion techniques applied in conscious nonhuman primates (3, 4, 43). The externalization of the ICV cannula line to a remotely controlled pump enables more control over the ICV infusion and readily permits acute or continuous chronic studies with minimal disturbance to the animal. Prior studies of this nature typically enabled only bolus ICV administrations (33) or chronic infusions to be undertaken using implantable osmotic pumps (3, 4, 43). The ICV infusion system described herein enables greater control over the dose quantity, timing, and duration.

In summary, we found that ICV administered GIP increased peripheral GIP concentrations and influenced postprandial islet peptide secretion in nonhuman primates. Our data are the first to demonstrate a role for central GIP action in the regulation of peripheral GIP release and the first to show that central GIP action can indirectly influence islet peptide secretion.
ACKNOWLEDGEMENTS

We gratefully acknowledge the expert technical assistance of Mr. David Weaver in implementing the tether system modifications and in the habituation, management, and care of the study animals. We thank Vicki Mattern for conducting all laboratory assays. We also thank the Southwest National primate Research Center veterinarians Dr. Patrice Frost and Dr. Cassandra Bauer for their surgical expertise and their care and management of the animals throughout the study. We acknowledge the contributions of Dr. Andrea Mari to the critical appraisal of the data and revisions to the manuscript.

GRANTS

Direct costs of the study were supported by a grant from the Kronkosky Foundation (San Antonio, Texas) Health and Human Services Program. This investigation used resources that were supported by the Southwest National Primate Research Center grant P51 OD011133 from the Office of Research Infrastructure Programs, National Institutes of Health. This investigation was conducted in facilities constructed with support from the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health through Grant Numbers C06 RR014578, C06 RR013556, C06 RR015456, C06 RR017515.

DISCLOSURES

The authors have no conflicts of interest to declare.
REFERENCES

ABSTRACT.

45. Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. *Endocrinology* 133: 2861-70, 1993.

Table 1. *GIP and GIPR* phylogenetic analysis summary

<table>
<thead>
<tr>
<th>GIP(1-42) amino acid sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIP-Hs</td>
</tr>
<tr>
<td>YAEGTFISDYSIAMDKIHQQDFVNWWLLAQKGKNDWKNHNTQ</td>
</tr>
<tr>
<td>GIP-Ph</td>
</tr>
<tr>
<td>YAEGTFISDYSIAMDKIHQQDFVNWWLLAQKGKNDWKNHNTQ</td>
</tr>
<tr>
<td>GIP-Cf</td>
</tr>
<tr>
<td>YAEGTFISDYSIAMDKIRQQDFVNWWLLAQKGKNDWKNHNTQ</td>
</tr>
<tr>
<td>GIP-Rn</td>
</tr>
<tr>
<td>YAEGTFISDYSIAMDKIRQQDFVNWWLLAQKGKNDWKNHNLITQ</td>
</tr>
</tbody>
</table>

Predicted GIP (1-42) amino acid sequence identity (%) among species

<table>
<thead>
<tr>
<th></th>
<th>GIP-Rn</th>
<th>GIP-Cf</th>
<th>GIP-Hs</th>
<th>GIP-Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIP-Rn</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIP-Cf</td>
<td>97.6</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIP-Hs</td>
<td>95.2</td>
<td>97.6</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>GIP-Ph</td>
<td>95.2</td>
<td>97.6</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Predicted GIPR (1-466) amino acid sequence identity (%) among species

<table>
<thead>
<tr>
<th></th>
<th>GIPR-Rn</th>
<th>GIPR-Cf</th>
<th>GIPR-Hs</th>
<th>GIPR-Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIPR-Rn</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIPR-Cf</td>
<td>80.8</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIPR-Hs</td>
<td>81.3</td>
<td>86.6</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>GIPR-Ph</td>
<td>81.1</td>
<td>86.1</td>
<td>96.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

GIP, glucose-dependent insulino-tropic polypeptide
GIPR, glucose-dependent insulino-tropic polypeptide receptor
Rn, *Rattus norvegicus* (rat)
Cf, *Canis lupus familiaris* (dog)
Hs, *Homo sapiens* (human)
Ph, *Papio hamadryas* (baboon).
Table 2. Baseline characteristics and fasted metabolic profile, n=3.

<table>
<thead>
<tr>
<th></th>
<th>Mean ±SD</th>
<th>Min- Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (kg)</td>
<td>28.9 ±2.1</td>
<td>26.5-30.6</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>92.3 ±1.3</td>
<td>91.0-94.0</td>
</tr>
<tr>
<td>Glucose-dependent insulinotropic polypeptide (pg/mL)</td>
<td>64.4±6.4</td>
<td>55.7-70.9</td>
</tr>
<tr>
<td>Insulin (μU/mL)</td>
<td>20.2 ±2.2</td>
<td>17.1-22.3</td>
</tr>
<tr>
<td>C-peptide (ng/mL)</td>
<td>0.490±0.266</td>
<td>0.250-0.667</td>
</tr>
<tr>
<td>Glucagon (pg/mL)</td>
<td>120.3±14.1</td>
<td>100.4-130.7</td>
</tr>
<tr>
<td>Pancreatic polypeptide (pg/mL)</td>
<td>51.9±25.7</td>
<td>15.8-73.4</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>34.4±3.6</td>
<td>29.3-37.3</td>
</tr>
<tr>
<td>Non-esterified free fatty acids (mEq/L)</td>
<td>0.260±0.085</td>
<td>0.168-0.372</td>
</tr>
</tbody>
</table>
Table 3. *Effects of intracerebroventricular GIP administration on fasted GIP, total GIP, and postprandial GIP concentrations*

<table>
<thead>
<tr>
<th></th>
<th>Control (aCSF)</th>
<th>GIP (20pmol.kg⁻¹.hr⁻¹)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted GIP (pg/mL)</td>
<td>66.5 ±8.0</td>
<td>680.6 ±412.8</td>
<td>0.047</td>
</tr>
<tr>
<td>Total GIP AUC (pg/mL x min)</td>
<td>724 ±136</td>
<td>3437 ±2514</td>
<td>0.041</td>
</tr>
<tr>
<td>Postprandial GIP AUC (pg/mL x min)</td>
<td>417.6 ±133.7</td>
<td>728.5 ±261.5</td>
<td>0.057</td>
</tr>
<tr>
<td>Postprandial GIP iAUC (pg/mL x min)</td>
<td>351.2 ±139.2</td>
<td>255.2 ±224.5</td>
<td>0.448</td>
</tr>
</tbody>
</table>

Data are mean ±SD, p-values are for means comparisons using paired *t*-tests. Fasted values were calculated as the average peptide concentration at the -30min. and -15min. time points. Total AUC was calculated as the total area under the curve from -135mins. to 300mins. AUC: area under the curve, iAUC: incremental area under the curve.
Table 4. Effects of intracerebroventricular GIP administration on pancreatic islet peptide secretion.

<table>
<thead>
<tr>
<th></th>
<th>Control (aCSF)</th>
<th>GIP (20pmol.kg(^{-1}).hr(^{-1}))</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted INS ((\mu U/mL))</td>
<td>12.8 ±5.5</td>
<td>15.9 ±7.3</td>
<td>0.330</td>
</tr>
<tr>
<td>Total INS AUC ((\mu U/mL x min))</td>
<td>19880 ±4524</td>
<td>26361 ±9440</td>
<td>0.123</td>
</tr>
<tr>
<td>Postprandial INS AUC ((\mu U/mL x min))</td>
<td>11910 ±3210</td>
<td>16140 ±5510</td>
<td>0.152</td>
</tr>
<tr>
<td>Postprandial INS iAUC ((\mu U/mL x min))</td>
<td>8130 ±3690</td>
<td>12030 ±3708</td>
<td>0.010</td>
</tr>
<tr>
<td>Fasted GLN (pg/mL)</td>
<td>109.9 ±10.3</td>
<td>99.1 ±13.0</td>
<td>0.450</td>
</tr>
<tr>
<td>Total GLN AUC (pg/mL x min)</td>
<td>38889 ±6917</td>
<td>46719 ±10875</td>
<td>0.599</td>
</tr>
<tr>
<td>Postprandial GLN AUC (pg/mL x min)</td>
<td>25920 ±4200</td>
<td>33420 ±9150</td>
<td>0.741</td>
</tr>
<tr>
<td>Fasted PP (pg/mL)</td>
<td>35.7 ±28.2</td>
<td>59.6 ±11.7</td>
<td>0.229</td>
</tr>
<tr>
<td>Total PP AUC (pg/mL x min)</td>
<td>42369 ±16965</td>
<td>55115 ±20184</td>
<td>0.003</td>
</tr>
<tr>
<td>Postprandial PP AUC (pg/mL x min)</td>
<td>37560 ±15480</td>
<td>49830 ±19530</td>
<td>0.037</td>
</tr>
<tr>
<td>Postprandial PP iAUC (pg/mL x min)</td>
<td>23790±14160</td>
<td>38160 ±20550</td>
<td>0.181</td>
</tr>
</tbody>
</table>

Data are mean ±SD, \(p\)-values are for means comparisons using paired t-tests. Fasted values were calculated as the average peptide concentration at the -30min. and -15min. time points. Total AUC was calculated as the total area under the curve from -135mins. to 300mins. AUC: area under the curve, iAUC: incremental area under the curve. INS: insulin; GLN: glucagon; PP: pancreatic polypeptide. iAUC not reported for GLN as values were below baseline during the postprandial period.
Table 5. Effects of intracerebroventricular GIP administration on plasma glucose, triglyceride, and free fatty acid concentrations.

<table>
<thead>
<tr>
<th></th>
<th>Control (aCSF)</th>
<th>GIP (20pmol.kg^{-1}.hr^{-1})</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted GLU (mg/dL)</td>
<td>91.7 ±3.3</td>
<td>93.0 ±2.9</td>
<td>0.643</td>
</tr>
<tr>
<td>Total GLU AUC (mg/dL x min)</td>
<td>307452±8557</td>
<td>300597 ±2711</td>
<td>0.403</td>
</tr>
<tr>
<td>Postprandial GLU AUC (mg/dL x min)</td>
<td>29164 ±2241</td>
<td>30049 ±540</td>
<td>0.503</td>
</tr>
<tr>
<td>Postprandial GLU iAUC (mg/dL x min)</td>
<td>1664 ±1483</td>
<td>2149 ±798</td>
<td>0.370</td>
</tr>
<tr>
<td>Fasted TG (mg/mL)</td>
<td>33.7 ±7.2</td>
<td>32.5 ±3.5</td>
<td>0.743</td>
</tr>
<tr>
<td>Total TG AUC (mg/dL x min)</td>
<td>116627 ±19047</td>
<td>109836 ±9177</td>
<td>0.614</td>
</tr>
<tr>
<td>Postprandial TG AUC (mg/dL x min)</td>
<td>11610 ±2834</td>
<td>10981 ±1342</td>
<td>0.769</td>
</tr>
<tr>
<td>Postprandial TG iAUC (mg/dL x min)</td>
<td>1819 ±1652</td>
<td>1552 ±1414</td>
<td>0.752</td>
</tr>
<tr>
<td>Fasted NEFA (mEq/L)</td>
<td>0.244±0.061</td>
<td>0.284±0.061</td>
<td>0.517</td>
</tr>
<tr>
<td>Total NEFA AUC (mEq/L x min)</td>
<td>827.0±248.2</td>
<td>885.3 ±181.4</td>
<td>0.751</td>
</tr>
<tr>
<td>Postprandial NEFA AUC (mEq/L x min)</td>
<td>58.8±3.6</td>
<td>62.6 ±15.5</td>
<td>0.738</td>
</tr>
</tbody>
</table>

Data are mean ±SD, p-values are for means comparisons using paired t-tests. Fasted values were calculated as the average concentration at the -30min. and -15min. time points. Total AUC was calculated as the total area under the curve from -135mins. to 300mins. AUC: area under the curve, iAUC: incremental area under the curve. GLU: glucose; TG: triglyceride; NEFA: non-esterified fatty acids. iAUC not reported for NEFA as values were below baseline during the postprandial period.
Figure Captions

Figure 1. Study design
A. Study procedure overview.
B. Body weight stability. Data are mean ±SEM, n=3.

Figure 2. Effect of ICV GIP on plasma GIP.
Plasma glucose-dependent insulinotropic polypeptide (GIP) concentrations under continuous ICV artificial cerebrospinal fluid (aCSF) infusion and under continuous ICV GIP infusion over the experimental period. ICV GIP infusion was initiated at T-120mins and meal test was administered at T0mins. Data are mean ±SEM, n=3.

Figure 3. Effect of ICV GIP on plasma insulin, glucagon, and pancreatic polypeptide.
A. Plasma insulin concentrations under continuous ICV artificial cerebrospinal fluid (aCSF) infusion and under continuous ICV GIP infusion over the experimental period. ICV GIP infusion was initiated at T-120mins and meal test was administered at T0mins. Data are mean ±SEM, n=3.
B. Plasma glucagon concentrations under continuous ICV artificial cerebrospinal fluid (aCSF) infusion and under continuous ICV GIP infusion over the experimental period. ICV GIP infusion was initiated at T-120mins and meal test was administered at T0mins. Data are mean ±SEM, n=3.
C. Plasma pancreatic polypeptide concentrations under continuous ICV artificial cerebrospinal fluid (aCSF) infusion and under continuous ICV GIP infusion over the experimental period. ICV GIP infusion was initiated at T-120mins and meal test was administered at T0mins. Data are mean ±SEM, n=3.

Figure 4. Glucose-dependent insulinotropic polypeptide receptor (GIPR) gene expression relative to glucagon-like peptide 1 receptor (GLP-1R) expression in the hypothalamus and pancreas of baboons (n=3) by quantitative real time PCR.
A. Mean ±SEM cycle threshold (CT) values.
B. Mean ±SEM ΔCT values (normalized to 18S expression).
Figure 1

A

Tethering system adaptation (21 days)

Stereotaxic brain coordinate identification

Intracerebroventricular cannula implant surgery

Venous catheter implant surgery and connection

Experimental period
Weeks 1 to 4 (21 days)

Explant surgery

Released from study

B

Body weight (kg)

Study period (week)
Figure 2

ICV CONTROL (aCSF) vs. ICV GIP (20pmol/kg/hr)

GIP (pg/mL) vs. Time (mins)
Figure 3

A

![Graph showing changes in Insulin (μU/mL) over time for ICV CONTROL (aCSF) and ICV GIP (20pmol/kg/hr)]

- **X-axis:** Time (mins) ranging from -150 to 300
- **Y-axis:** Insulin (μU/mL) ranging from 0 to 160
Time (mins)

Glucagon (pg/mL)

-150 -120 -90 -60 -30 0 30 60 90 120 150 180 210 240 270 300

ICV CONTROL (aCSF)
ICV GIP (20pmol/kg/hr.)