Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice

Tatsuro Egawa¹, Ayumi Goto¹², Yoshitaka Ohno³, Shingo Yokoyama³, Akihiro Ikuta¹, Miho Suzuki¹, Takao Sugiura⁴, Yoshinobu Ohira⁵, Toshitada Yoshioka⁶, Tatsuya Hayashi², and Katsumasa Goto¹

¹ Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
² Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
³ Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
⁴ Department of Exercise and Sports Physiology, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
⁵ Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
⁶ Hirosaki Gakuin University, Hirosaki, Aomori, Japan

Short title: AMPK and unloading-induced skeletal muscle atrophy

Address for correspondence to:
Katsumasa Goto, Ph.D.
Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University

Copyright © 2015 by the American Physiological Society.
University, 20-1 Ushikawa-cho Matsushita, Toyohashi, Aichi, 440-8511, Japan

E-mail: gotok@sepia.ocn.ne.jp
5’AMP-activated protein kinase (AMPK) is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-week hindlimb suspension between transgenic mice overexpress dominant-negative mutant of AMPK (AMPK-DN) and their wild-type littermates (WT) mice. Male WT (n=24) and AMPK-DN (n=24) mice were randomly divided into two groups: untreated preexperimental control (n=12 in each group) and unloading (n=12 in each group) groups. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ~30% in WT mice by hindlimb unloading, while by ~20% in AMPK-DN mice. There were no changes in the indicators of protein synthesis: puromycin-labeled rotein and Akt/70-kDa ribosomal S6 kinase signaling. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to protein degradation system, phosphorylated forkhead box class O 3a, inhibitor of κBα, microRNA (miR)-1 and miR-23a were decreased in only WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulating protein degradation system, especially ubiquitin-proteasome system.
Keywords: protein degradation, autophagy, ubiquitin-proteasome, microRNA, heat

shock protein
INTRODUCTION

Skeletal muscle is the largest tissue in the body, accounting for approximately 40% of the total body mass, and has a crucial role in metabolism as well as locomotion. Skeletal muscle has a high ability to adapt to multiple stimuli. Increased loading such as resistance training and mechanical stretching leads to skeletal muscle hypertrophy (18, 75). In contrast, aging, poor nutrition, several diseases such as diabetes, cancer, sepsis, and chronic renal failure, and decreased loading such as inactivity, lead to skeletal muscle atrophy (23, 34, 39). Skeletal muscle atrophy occurs by the result of changes in protein turnover; decreased protein synthesis, increased protein degradation, or combination of both (17). The coordination of protein turnover in atrophic process is regulated by complicated molecular responses and the molecular mechanism involved in this process in skeletal muscle is yet completely understood and remains to be elucidated.

5’AMP-activated protein kinase (AMPK) is well established as a metabolic sensor that helps maintain cellular energy homeostasis by modulating glucose, lipid, and protein metabolism (16, 26, 28). AMPK is a heterotrimeric kinase comprising a catalytic α subunit and two regulatory subunits, β and γ. Two distinct α-isoforms (α1 and α2) are exist in mammalian cells: α1 is expressed ubiquitously, whereas α2 is dominant in skeletal muscle, heart, and liver (69). Binding of AMP to a Bateman domain of the γ-subunit of AMPK induces the allosteric activation of AMPK and phosphorylation of the Thr172 residue of the α-subunit, which is essential for full kinase activity (27, 59). Several studies in the past decade suggest that AMPK has a potential role in regulating skeletal muscle mass. Gordon et al. (21, 72) provided the evidence that
Elevated AMPK activity was associated with diminished capacity for hypertrophy of fast-twitch skeletal muscle in aged rat. Moreover, Paturi et al. (55) suggested that impaired hypertrophy of slow-twitch skeletal muscle during overload in diabetic rat was partly attributed to increased AMPK phosphorylation. A recent study using a knockout mouse model demonstrated that overload-induced muscle hypertrophy was accelerated in AMPKα1-deficient mice compared to the wild-type mice (50). Correspondingly, we (13) showed in vitro that stimulation with a pharmacological AMPK agonist on cultured skeletal muscle cells inhibited myotube hypertrophy and this response was attenuated in the AMPKα1/α2-knockdown condition. In addition, skeletal muscle-specific AMPKα1/α2 double knockout mice exhibit higher muscle mass than the wild-type mice in normal growth condition (37, 38). Taken together, it is suggested that AMPK is involved in the modulation of skeletal muscle mass during hypertrophic and growth conditions.

Recently, it was shown that AMPK pathway was activated in atrophic gastrocnemius muscle of mice at the early stage (3 days) of hindlimb unloading (11). However, it was not revealed whether the increase of AMPK by hindlimb unloading was directly associated with the progress of muscle atrophy. Therefore, we firstly aimed to evaluate the potential function of AMPK in skeletal muscle atrophy in response to hindlimb unloading.

AMPK is known to modify several signaling molecules that engage protein synthesis and degradation. It is accepted that AMPK inhibits mTOR signaling pathway (5), which is the major signaling pathway regulating protein synthesis. Indeed, the interaction of AMPK and mTOR signaling in regulating muscle hypertrophy was reported previously (50). On the other hand, AMPK seems to control protein.
degradation via two major catabolic systems in skeletal muscle; ubiquitin-proteasome
(35, 52) and autophagy systems (62) are activated by pharmacological AMPK
stimulation. We (13) also demonstrated previously that AMPK inhibits hypertrophy
partly through 72-kDa heat shock protein (HSP72)-mediated activation of
ubiquitin-proteasome system in skeletal muscle cells. In addition, our data in the study
suggested that a post-transcriptional regulation by microRNA (miRNA) might be
associated with the activating process of ubiquitin-proteasome system. The discovery of
miRNAs has provided a new aspect that could expand our knowledge to understand
mechanisms of skeletal muscle atrophy (68, 77). Therefore, we secondly aimed to
evaluate the possible involvement of these molecules in AMPK-mediated regulation of
muscle mass during hindlimb unloading.

For these purpose, we examined the alterations of muscle mass and molecular
responses after 2-week hindlimb unloading using transgenic mice that overexpress
muscle-specific dominant-negative mutant of AMPKα1 (AMPK-DN) (44). AMPK-DN
mice exhibit almost complete depletion in AMPKα2 activity and moderate depletion in
AMPKα1 activity (15, 32, 44, 70). We found that loss of muscle mass in slow-twitch
soleus muscle, but not fast-twitch gastrocnemius-plantaris complex and EDL muscles,
of AMPK-DN mice during hindlimb unloading was less than that of wild-type
littermates (WT) mice. Furthermore, we found that the adaptive responses of the
molecules related to protein degradation during hindlimb unloading were attenuated in
atrophic soleus muscle of AMPK-DN mice compared to WT mice. Our findings give
new insights into the molecular processes involved in the skeletal muscle adaptation
under atrophic conditions.
MATERIALS AND METHODS

Animals

Transgenic (AMPK-DN) mice expressing a dominant negative mutant of AMPKα1 in the skeletal muscle (44) were obtained from JCRB (Japanese Collection of Research Bioresources Cell Bank) Laboratory Animal Resource Bank at NIBIO (National Institute of Biomedical Innovation, Osaka, Japan). This strain expresses transgene introduced D157A mutation into cDNA encoding full length amino acid sequence of rat AMPK α1 subunit under the control of human α actin promoter on -2,000 bp. The heterozygous AMPK-DN mice were backcrossed with C57BL/6NCr mice, and twenty-four male AMPK-DN mice (age: 13.2 ± 3.2 weeks, body weight: 24.4 ± 1.5 g, mean ± SD) and twenty-four their WT mice (age: 13.5 ± 3.5 weeks, body weight: 23.2 ± 2.9 g, mean ± SD) were used. All mice were housed in an animal room maintained at 22-24°C with a 12:12-h light-dark cycle and fed a standard laboratory diet and water ad libitum. All animal protocols were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the National Institutes of Health (Bethesda, MD) and were approved by the Animal Use Committee at Toyohashi SOZO University (A2012001, A2013003, A2014003). All treatments of animals were performed under anesthesia with intraperitoneal injection of sodium pentobarbital (50 mg/kg), and all efforts were made to prevent discomfort and suffering.

Procedure of hindlimb unloading

Both AMPK-DN and WT mice were randomly divided into two groups: untreated preexperimental control (n=12 in each group) and unloading (n=12 in each group)
groups. Mice of the unloading group were subjected to continuous hindlimb suspension for 2 weeks. Hindlimb suspension was performed as described previously (43). Briefly, tails of the mice were cleaned, and were loosely surrounded by adhesive tapes cross-sectionally, fixing a string on the dorsal side of the tail, to keep the blood flow intact. The string was fastened to the roof of the cage at a height allowing the forelimbs to support the weight, yet preventing the hindlimbs from touching the floor and the sides of the cage. The mice could reach food and water freely by using their forelimbs. Body weight of each mice was recorded at the end of experiment.

Protein synthesis measurements

Protein synthesis was measured by the surface sensing of translation (SUnSET) method as previously described (20). Briefly, 30 min before tissue collection, some mice (n=4 in each group) were injected intraperitoneally with puromycin (0.04 μmol/g) dissolved in 100 μl of phosphate buffered saline (PBS) under anesthesia. The expression of puromycin-labeled proteins was analyzed by Western blot analyses as described below.

Tissue collection

Under anesthesia, soleus, extensor digitorum longus (EDL), and gastrocnemius-plantaris complex (GAS-PLA) muscles were dissected from each mice and weighed. We analyzed each molecule in each soleus muscle dissected from each mouse. Briefly, left soleus muscle were cross-sectionally cut into halves at the midbelly region, and proximal half of the left muscles were immediately frozen in 2-methylbutane cooled with liquid nitrogen and stored at -80°C for muscle fiber
cross-sectional area (fiber CSA) analyses. Distal half of the left muscles for real-time RT-PCR analyses and right muscles for western blot analyses and AMPK kinase assay were frozen in liquid nitrogen, and stored at -80°C.

Western blot analyses

Sample preparation and western blot analyses were performed with some modification of the previously reported method (14, 53). Briefly, the soleus muscles (>4 mg) were homogenized in 60 times its weight of ice-cold lysis buffer (CellLytic MT, Sigma-Aldrich, St. Louis, MO) with Protease/Phosphatase Inhibitor Cocktail (5872, Cell Signaling Technology, Danvers, MA) that contains inhibitors against the major classes of endogenous proteases and phosphatases. The homogenates were then sonicated and centrifuged at 16,000 g at 4°C for 15 min. The supernatants were collected for the determination of protein contents by using the Bradford technique. Protein contents in the supernatants were >420 μg in each muscle. The supernatants were solubilized in Laemmli’s sample buffer containing mercaptoethanol and boiled. Samples (10 μg of protein) were separated by SDS-PAGE using a 7.5, 10, or 12% polyacrylamide gel. Proteins were then transferred to polyvinylidene difluoride membranes by using Trans-Blot Turbo transfer system (Bio-Rad Laboratories, Hercules, CA). Membranes were blocked for 1 h at room temperature in Blocking One-P (Nacalai Tesque, Kyoto, Japan) and then incubated overnight at 4°C with primary antibodies [acetyl-CoA carboxylase (ACC) Ser79 (3661, Cell Signaling Technology, Danvers, MA), ACC (3662, Cell Signaling Technology), Akt Ser473 (9271, Cell Signaling Technology), Akt (9272, Cell Signaling Technology), forkhead-box class O (FoxO) 3a Ser253 (9466, Cell Signaling Technology), FoxO3a (2497, Cell Signaling Technology), HSP72
(ADI-SPA-812, Enzo Life Sciences, Farmingdale, NY), heat shock transcription factor 1 (HSF1) (4356, Cell Signaling Technology), inhibitor of κBα (IκBα) (9242, Cell Signaling Technology), microtubule-associated protein 1 light chain 3 (LC3) (2775, Cell Signaling Technology), muscle RING finger 1 (MuRF1) (GTX110475, Gene Tex, Darmstadt, Irvine, CA), puromycin (MABE343, Merck Millipore, Darmstadt, Germany), p62 (5114, Cell Signaling Technology), 70-kDa ribosomal S6 kinase (p70S6K) Thr389 (9234, Cell Signaling Technology), p70S6K (2708, Cell Signaling Technology), ubiquitin (3933, Cell Signaling Technology), Unc-51-like kinase 1 (Ulko) (8054, Cell Signaling Technology), β-actin (4967, Cell Signaling Technology) diluted in Tris buffered saline with 0.1% Tween 20 (TBS-T). The membranes were then washed with TBS-T and reacted with anti-rabbit IgG (7074, Cell Signaling Technology), or anti-mouse IgG2a (ab97245, Abcam, Cambridge, UK) for 1h at room temperature. After the final wash with TBS-T, protein bands were visualized using chemiluminescence (Wako Pure Chemical Industries, Osaka, Japan), and measured using Light-Capture (AE-6971, ATTO Corporation, Tokyo, Japan). The intensity of the signals was quantified using ImageJ software (National Institutes of Health, MD). The level of β-actin was evaluated as an internal control.

Real-time RT-PCR analyses

Real-time RT-PCR analyses were performed as was described previously (81). Briefly, total RNA was extracted from the soleus muscles (>1 mg) using the miRNeasy Mini kit (Qiagen, Hiden, Germany) according to the manufacturer’s protocol. Total RNA contents in the extractions were >300 ng in each muscle. For the detection of mRNA, the RNA (200 ng) was reverse-transcribed to cDNA using PrimeScript RT
Master Mix (Takara Bio), and then synthesized cDNA (4 ng) was applied to real-time RT-PCR (Thermal Cycler Dice Real Time System IIMRQ, Takara Bio) using Takara SYBR Premix Ex Taq II (Takara Bio). For the detection of microRNA (miRNA or miR), the RNA (60 ng) was reverse-transcribed to cDNA using Mir-X™ miRNA First Strand Synthesis Kit (Clontech Laboratories, Mountain View, CA), and then synthesized cDNA (4 ng) was applied to real-time RT-PCR using Mir-X™ miRNA qRT-PCR SYBR Kit (Clontech Laboratories). Relative fold change of expression was calculated by the comparative CT method with Takara Thermal Cycler Dice Real Time System Software Ver. 4.00. To normalize the amount of total RNA present in each reaction, S18 ribosomal RNA (18S rRNA) for mRNA, and U6 for miRNAs were used as an internal standard.

Following primers were used: MuRF1, 5’-AGGACTCCTGCAGAGTGACCAA-3’ (forward) and 5’-TTCTCGTCCAGGATGGCGTA-3’ (reverse); atrogin-1/muscle atrophy F-box (MAFbx), 5’-TGTCCTTGAATTCAGCAAGCAAAC-3’ (forward) and 5’-TGTGGCCATCCATTATTTCCAG-3’ (reverse); 18S rRNA, 3’-ACTCAACACGGGAAACCTCA-5’ (forward) and 3’-AACCAGACAAATCGCTCCAC-5’ (reverse); miR-1, 5’-TGGAATGTAAAGAAGTATGTATG-3’ (forward); miR-23a, 5’-ATCACATTGCCAGGGATTTCC-3’ (forward); miR-133a, 5’-TTTGGTCCCCTTCAACCGCTG-3’ (forward); miR-206, 5’-TGGAATGTAAAGAAGTGTGG-3’ (forward); miR-208b, 5’-ATAAGACGACAAAAAGGTTTGT-3’ (forward); miR-499, 5’-TTAAGACTTGCAGTGATGTTT-3’ (forward). The U6 primer and reverse primers for miRNA were provided with the kit.
Isoform-specific AMPK activity assay

The AMPK activity assay was performed with some modification of the previously reported method (74). Muscles were homogenized as described in Western blot analyses, and resultant supernatants (50 µg of protein) were immunoprecipitated with isoform-specific antibodies directed against the α1 or α2 catalytic subunits of AMPK (kindly gifted by Dr. Licht Miyamoto) and protein A-Sepharose beads (GE Healthcare, Buckinghamshire, UK). Immunoprecipitates were washed twice both in wash buffer (240 mM HEPES and 480 mM NaCl). Kinase reactions were performed in the presence of synthesized and purified SAMS peptide (HMRSAMGLHLVKRR) as AMPK substrate (74), and 40 mM HEPES (pH 7.0), 0.2 mM AMP, 80 mM NaCl, 0.8 mM dithiothreitol, 5 mM MgCl₂, 0.2 mM ATP (10 µCi of [γ-³²P] ATP/sample) (PerkinElmer, Wellesley, MA) in a final volume of 40 µl for 20 min at 30°C. At the end of the reaction, a 15-µL aliquot was removed and spotted onto Whatman P81 paper (Whatman International, Maidstone, UK). The papers were washed 6 times in 1% phosphoric acid and once in acetone.³²P incorporation was quantitated with a scintillation counter, and kinase activity was expressed as fold increases relative to the basal samples.

Fiber CSA analyses

To measure the CSA of individual fibers, muscle cryostat sections were stained for laminin, a major component of the basal lamina, by the standard immunohistochemical technique (33). Briefly, serial transverse cryosections (7 µm thick) of the frozen samples were cut at −20°C and mounted on the slide glasses. Cross sections were fixed with paraformaldehyde (4%), and then were post-fixed in ice-cold methanol. After blocking
by using a reagent (1% Roche Blocking Regent; Roche Diagonost, Penzberg, Germany), samples were incubated with the primary antibodies for rabbit polyclonal anti-laminin (Z0097, Dako Cytomation, Glostrup, Denmark). Sections were also incubated with the second primary antibodies for fluorescein isothiocyanate-conjugated anti-rabbit IgG. Fiber CSA (~100 fibers/muscle) was automatically measured as the internal laminin-unstained area by using ImageJ. The relative fiber CSA to body size was normalized by body weight\(^{2/3}\) according to Jaric et al. (30).

Plasma corticosterone measurement

Blood samples were collected from carotid artery into tubes containing heparin as anticoagulant, and plasma was separated by centrifugation at 8000 g for 15 minutes and kept at -80°C until use. Plasma level of corticosterone was measured using ELISA kit (Assaypro, St. Charles, MO).

Statistical analyses

Values were expressed as mean ± SEM. In Figure 3A, values are expressed as mean ± SD due to small numbers of animals. Statistical significance was analyzed by using two-way analysis of variance (ANOVA) with mice and treatments as main factors. If there are any significant main effects (mice and/or treatments), post-hoc multiple comparisons tests were performed between the factors (WT vs. AMPK-DN and/or untreated control vs. hindlimb unloading), and if there are any significant interactions (mice × treatments), post-hoc simple effects tests were performed among 4 groups. Post hoc analyses were conducted with Tukey-Kramer’s test. Student’s t-test was used to compare the percentage decrease by hindlimb unloading in muscle weight between WT
and AMPK-DN (Figure 2C and 2E). The differences between groups were considered statistically significant at $P < 0.05$. The effect size (ES) was also calculated to examine whether the effect was meaningful and practically important. We interpreted the magnitude of the ES by using conventional threshold values of 0.1 as the smallest effect, 0.3 as a moderate effect, and 0.5 as a large effect (12).
RESULTS

AMPK activity

The measurement results of AMPK activity and phosphorylation level of ACC Ser^{79}, a marker of AMPK activity, in soleus muscle are shown in Figure 1. Basal activity of AMPKα1 and AMPKα2 was lower by 20% (p<0.05, ES=0.66) and 95% (p<0.05, ES=0.97) in AMPK-DN mice than WT mice, respectively (Figure 1A). The predominant reduction of AMPKα2 activity rather than AMPKα1 activity in the transgenic mice expressing inactive α1 mutant was corresponding with the results previously reported (15, 32, 44, 70). Hindlimb unloading did not affect both AMPKα1 (p=0.06, ES=0.32) and AMPKα2 (p=0.96, ES=0.01) activity (Figure 1A). Basal expression level of phosphorylated ACC Ser^{79} was lower by 55% in AMPK-DN mice than WT mice (p<0.05, ES=0.73), and was not affected by hindlimb unloading (p=0.11, ES=0.19, Figure 1B). ACC expression was increased by hindlimb unloading (p<0.05, ES=0.37, Figure 1B).

Plasma corticosterone level

The changes in the plasma corticosterone level, an indicator of stress status, are shown in Table 1. The plasma corticosterone level was increased in response to hindlimb unloading (p<0.05, ES=0.45), but there was no difference in the levels of corticosterone between WT and AMPK-DN mice (p=0.26, ES=0.20, Table 1).

Body weight and muscle mass

The data of body weight and muscle mass are shown in Figure 2. The overall
differences in the body weight between mice were statistically significant: the body
weight of AMPK-DN mice was slightly less compared to WT mice during experimental
period (p<0.05, ES=0.23, Figure 2A). The body weight was reduced by hindlimb
unloading (p<0.05, ES=0.66, Figure 2A).

Although the absolute soleus weight was reduced by hindlimb unloading (p<0.05,
ES=0.93), the level after hindlimb unloading in AMPK-DN mice was significantly
higher than in WT mice (p<0.05, ES=0.29, Figure 2B). The relative soleus weight to
body weight was also decreased by hindlimb unloading (p<0.05, ES=0.77), and the
level after hindlimb unloading in AMPK-DN mice was significantly higher than in WT
mice (p<0.05, ES=0.62, Figure 2C). The degree of % changes were larger in WT mice
(30%) than in AMPK-DN mice (17%) (p<0.05, ES=0.62, Figure 2C). Similarly, the
fiber CSA of soleus muscle after hindlimb unloading was smaller than before (p<0.05,
ES=0.89, Figure 2D). The relative fiber CSA of soleus muscle to body weight$^{2/3}$ was
decreased in response to hindlimb unloading (p<0.05, ES=0.76), and the level after
hindlimb unloading in AMPK-DN mice was significantly higher than in WT mice
(p<0.05, ES=0.63, Figure 2E). The degree of % changes were larger in WT mice (28%)
than in AMPK-DN mice (16%) (p<0.05, ES=0.63, Figure 2E).

The absolute EDL weight was reduced in response to hindlimb unloading (p<0.05,
ES=0.49), and was lower in AMPK-DN mice compared to WT mice (p<0.05, ES=0.73,
Figure 2F). The relative EDL weight to body weight was lower in AMPK-DN mice than
in WT mice (p<0.05, ES=0.56), and no change was observed by hindlimb unloading
(p=0.07, ES=0.27, Figure 2G). Hindlimb unloading also decreased the absolute
GAS-PLA complex weight (p<0.05, ES=0.77) and the relative GAS-PLA complex
weight to body weight (p<0.05, ES=0.56, Figure 2H). Both the absolute (p<0.05,
ES=0.53) and relative (p<0.05, ES=0.52) GAS-PLA complex weight were lower in AMPK-DN mice compared to WT mice (Figure 2I).

Protein synthesis pathway

Figure 3 shows the changes in the expression of puromycin-labeled proteins and molecules associated with protein synthesis in soleus muscle. The expression of puromycin-labeled proteins was diminished by hindlimb unloading (p<0.05, ES=0.61, Figure 3A). Correspondingly, the expressions of phosphorylated Akt Ser 473 (p<0.05, ES=0.57, Figure 3C) and phosphorylated p70S6K Thr 389 (p<0.05, ES=0.37, Figure 3D) were also decreased in response to hindlimb unloading in both mice. There were no differences in these parameters between WT and AMPK-DN mice (Akt: p=0.77, ES=0.04; p70S6K: p=0.63, ES=0.11, Figure 3C and 3D). Akt (p<0.05, ES=0.65, Figure 3C) but not p70S6K (p=0.14, ES=0.29, Figure 3D) expression was increased by hindlimb unloading.

Autophagy system

The changes in the expression of proteins related to autophagy system in soleus muscle are shown in Figure 4. Ulk1 expression was increased by hindlimb unloading in WT mice (p<0.05, ES=0.63), whereas it was not altered in AMPK-DN mice (p=0.90, ES=0.03, Figure 4B). The expression level of LC3I in AMPK-DN mice was same as that in WT mice (p=0.41, ES=0.15), and was not altered during hindlimb unloading (p=0.17, ES=0.25, Figure 4C). LC3II expression was up-regulated in WT mice (p<0.05, ES=0.50) by hindlimb unloading but not in AMPK-DN mice (p=0.25, ES=0.88, Figure 4C). The relative expression of LC3II to LC3I was increased in response to hindlimb unloading.
unloading by 8.0-fold in WT mice (p<0.05, ES=0.58) but by 2.0-fold in AMPK-DN mice (p=0.19, ES=0.50, Figure 4C). p62 expression was increased by hindlimb unloading in WT mice (p<0.05, ES=0.71), but not in AMPK-DN mice (p=0.59, ES=0.12, Figure 4D).

Ubiquitin-proteasome system

The variations in the expression of ubiquitinated protein and molecules related to ubiquitin-proteasome system in soleus muscle are shown in Figure 5. The accumulation of ubiquitinated proteins was observed after hindlimb unloading in WT mice (p<0.05, ES=0.65), but not in AMPK-DN mice (p=0.77, ES=0.07, Figure 5A). MuRF1 mRNA expression was significantly increased in response to hindlimb unloading by 4.0-fold in WT mice (p<0.05, ES=0.77), but not in AMPK-DN mice (p=0.28, ES=0.32, Figure 5B). The atrogin-1/MAFbx mRNA expression was up-regulated in response to hindlimb unloading (p<0.05, ES=0.26, Figure 5B). The protein expression of MuRF1 was also higher after hindlimb unloading in WT mice (p<0.05, ES=0.46), whereas there was no alteration in AMPK-DN mice (p=0.85, ES=0.06, Figure 5C).

Signaling molecules associated with protein degradation systems

The changes in the expression of proteins involved in autophagy and ubiquitin-proteasome systems in soleus muscle are shown in Figure 6. The expression of phosphorylated FoxO3a Ser253 was decreased by hindlimb unloading in WT mice (p<0.05, ES=0.65), whereas that in AMPK-DN mice was not affected by hindlimb unloading (p=0.30, ES=0.14, Figure 6B). The expression of FoxO3a was not different between the mice (p=0.46, ES=0.12) and was not changed by hindlimb unloading.
(p=0.17, ES=0.26, Figure 6B). The decrease of the expression level of IkBα by hindlimb unloading was observed in WT mice (p=0.07, ES=0.70), whereas there was no alteration in AMPK-DN mice (p=0.85, ES=0.04, Figure 6C). The IkBα expression level after hindlimb unloading was higher in AMPK-DN mice than WT mice (p<0.05, ES=0.51, Figure 6C). The expression of HSP72 was constantly greater in AMPK-DN mice compared to WT mice during experiment (p<0.05, ES=0.57), and was reduced in response to hindlimb unloading by half in WT mice and by 20% in AMPK-DN mice (p<0.05, ES=0.35, Figure 6D). The expression of HSF1 was down-regulated by hindlimb unloading (p<0.05, ES=0.52, Figure 6E).

miRNA

Figure 7 shows the changes in the expression of miRNAs related to skeletal muscle atrophy in soleus muscle. The expressions of miR-1 (p<0.05, ES=0.85) and miR-23a (p<0.05, ES=0.76) were down-regulated by hindlimb unloading in WT mice while those in AMPK-DN mice were not altered (miR-1: p=0.20, ES=0.38; miR-23a: p=0.64, ES=0.13, Figure 7A and B). The expressions of miR-133a (p<0.05, ES=0.55, Figure 7C), miR-208b (p<0.05, ES=0.64, Figure 7E), and miR-499 (p<0.05, ES=0.69, Figure 7F) were reduced in response to hindlimb unloading. There was no effect by hindlimb unloading on miR-206 expression (p=0.17, ES=0.28, Figure 7D).
The present study showed that the suppression of skeletal muscle-specific AMPK activity, mainly AMPKα2 activity, partially attenuated unloading-induced atrophy of slow-twitch soleus muscle, accompanied with suppressed activation of protein degradation pathways including ubiquitin-proteasome system. To our knowledge, our findings are the first evidence that demonstrates the direct role of AMPK in skeletal muscle atrophy in vivo.

It is well known that diminished loading results in skeletal muscle atrophy (7). The hindlimb suspension rodent model was developed to mimic spaceflight-associated skeletal muscle atrophy. Furthermore, antigravitational slow soleus muscle has been used the most frequently in the experiment of unloading (22, 43, 71, 81) because it is composed more than 50% of slow-twitch fiber (78) which is more affected by reduced weight-bearing. The molecular profiling of soleus muscle in response to hindlimb suspension has significance for understanding the underlying mechanism of unloading- and disuse-associated muscle atrophy. The hindlimb suspension has also proven to be useful for investigating the physiological responses to unloading as well as disuse (47), but the suspension is some stressful procedure (48). In fact, the high corticosterone levels in plasma (Table 1) and the decrease in body weight (Figure 2A) were observed after hindlimb unloading, although the changes in plasma corticosterone and body weight in both types of mice were identical.

When the muscle weight was normalized to body weight to correct for the loss of weight after hindlimb unloading, the relative weight of soleus (Figure 2C) and GAS-PLA (Figure 2I) muscles to body weight were decreased following hindlimb
unloading. Notably, soleus muscle was atrophied by ~30% in WT mice during hindlimb unloading, while the deficiency of skeletal muscle AMPKα2 activity weakened the progress of atrophy almost by half (~17%, Figure 2C and E). In contrast, there was no difference in the degree of atrophy in GAS-PLA muscle between WT and AMPK-DN mice. These data indicate that AMPK, mainly AMPKα2, may be a crucial molecule regulating unloading-induced skeletal muscle atrophy, especially in slow-twitch muscle.

On the other hand, previous study demonstrated that AMPKα1 rather than AMPKα2 is important for regulating skeletal muscle mass in overload-induced hypertrophy (50). Although we cannot exclude the involvement of AMPKα1 in the present study; AMPKα1 activity was also lower by 20% in AMPK-DN mice (Figure 1), the different α isoforms might play a major role in regulating skeletal muscle mass under hypertrophic or atrophic stimuli.

A recent study reported that skeletal muscle AMPK signaling was up-regulated at the early stage (3 days) of hindlimb unloading and returned to basal state at 7 days in mice (11). Correspondingly, our findings showed no activation of AMPK signaling after 2-week hindlimb unloading (Figure 1). Although we did not examine the time-course changes of AMPK activity, it might be that AMPK signaling was temporary activated following hindlimb unloading and returned to basal state at 2 weeks in the present study. Moreover, it has been reported that soleus muscle atrophy during hindlimb unloading is more severe in early (~7 days) phase and moderate in latter (7~14 days) phase (3, 49). Therefore, it is speculated that the difference of the progress of soleus muscle atrophy is attributed to the suppression of AMPK activation at the early phase of hindlimb unloading.

Unloading-induced skeletal muscle atrophy is considered to be contributed partly
by decreased protein synthesis (63). Akt/mammalian target of rapamycin (mTOR)/p70S6K pathway is well established as a central regulator of protein synthesis (45), and the negative correlation of AMPK with mTOR signaling has been shown (5). Moreover, in vivo researches have demonstrated that AMPK deficiency induces overgrowth in overloaded skeletal muscle through up-regulation of mTOR signaling pathway in mice (38, 50). In the present study, however, we found that the expression of puromycin-labeled proteins, an indicator of protein synthesis (20), was down-regulated in response to unloading, and this down-regulation was occurred independent of the AMPK activity (Figure 3A). Although the down-regulation was statistically significant (p=0.001), there was some concern that high variability of the expression in untreated control group of WT mice was observed (Figure 3A) and that this experiment was performed with small sample size (n=4/group). In regard to this point, we consider that this data is reliable because the effect size, a standardized index that is independent of sample size, was large (ES=0.61). Moreover, the phosphorylated level of Akt (activated Akt) and p70S6K (activated p70S6K) were suppressed by unloading in both mice (Figure 3B and 3C) as correspondence with the data of puromycin-labeled proteins. Taken together, it is suggested that AMPK-mediated modulation of skeletal muscle mass during unloading is controlled by another processes from protein synthesis pathway.

Interestingly, total Akt expression was increased following hindlimb unloading despite decreasing of the phosphorylated form of Akt (Figure 3C). Up-regulation of total Akt expression by 3-week hindlimb unloading in mouse muscle was previously reported (41). However, it has been shown that total Akt expression was not changed (67) or decreased (4) by 2-week hindlimb unloading in rat muscle. Total Akt alterations
in response to hindlimb unloading have been controversial, and thus further investigation is required for this matter.

Increased protein degradation is contributed to unloading-induced atrophy in skeletal muscle (71). Autophagy is an important cell proteolytic system that controls protein turnover in skeletal muscle (42). The process of autophagy is regulated by multiple autophagy-related proteins. ULK1, also known as Atg1, is considered to be a key serine/threonine protein kinase acting at the early step of autophagosome formation (79). During autophagosome formation, LC3I is converted to LC3II through lipidation that allows for LC3 to become associated with autophagic vesicles. The presence of LC3 in autophagosomes and the conversion of LC3 to the lower migrating form LC3II have been used as indicators of autophagy activity (31). Recently, it has been reported that AMPK activation stimulates autophagosome formation in skeletal muscle cells (62), thus a modulation of autophagy process is possible to involve in AMPK-mediated regulation of protein degradation during unloading. In the present study, expression of Ulk1 (Figure 4B) and relative expression of LC3II to LC3I (Figure 4C) was up-regulated by unloading in WT mice, whereas the up-regulation was attenuated in the suppression of AMPK activity. These findings indicate that AMPK mediates autophagosome formation during unloading-induced skeletal muscle atrophy.

The ubiquitin-binding protein p62 which binds to LC3 is preferentially degraded by autophagy (54), and thus breakdown of p62 is generally used as a marker of autophagy flux (46). In the present study, accumulation of p62 after hindlimb unloading was also observed in WT mice but not in AMPK-DN mice (Figure 4D). This is consistent with the previous findings that p62 mRNA is up-regulated in mouse soleus (10) and gastrocnemius (11) muscle following 3-day hindlimb unloading and that p62 protein is
increased by 4-week hindlimb unloading in mouse tibialis anterior and gastrocnemius muscle (40). Accumulation of p62 generally indicates an impairment of autophagy flux (46), but p62 hyperexpression was also observed in cancer cachexia-induced skeletal muscle atrophy despite the autophagy induction (56). In addition, a recent study reported the accumulation of p62 in atrophic muscle of aged mice (60). Although our findings indicate that AMPK modulates the expression of autophagy-related proteins during unloading-induced muscle atrophy, we cannot ascertain whether AMPK-mediated autophagy regulation is associated with the progress of muscle atrophy in response to hindlimb unloading.

Ubiquitin-proteasome system is also well known as a major protein degradation pathway (6). The key enzyme in this pathway is E3 ubiquitin ligases, which is responsible for protein ubiquitination. The two muscle-specific ubiquitin ligases, MuRF1 and atrogin-1/MAFbx, have been considered to be master regulators of skeletal muscle atrophy, because these genes are up-regulated in different models of muscle atrophy and have an important role in increasing protein degradation through ubiquitin-proteasome system (3, 19). Previous studies have reported that agonist-induced activation of AMPK enhances protein degradation accompanied by increased MuRF1 and atrogin-1/MAFbx mRNA expressions in cultured myotubes (35, 52). In addition, we have recently demonstrated that pharmacological activation of AMPK up-regulates MuRF1 mRNA expression and this up-regulation is abolished in AMPK-knockdown cells (13). Thus, AMPK appears to be associated with activation of ubiquitin-proteasome system, and it is possible that AMPK regulates protein degradation through ubiquitin-proteasome system during unloading. In the present study, the unloading-induced activation of ubiquitin-proteasome system, increased expressions
of ubiquitinated proteins, MuRF1 mRNA and protein, was attenuated in the suppression of AMPK (Figure 5). Therefore, it is suggested that AMPK regulates ubiquitin-proteasome system-mediated protein degradation during skeletal muscle atrophy in response to unloading.

Our findings suggest a role of AMPK that regulates unloading-induced skeletal muscle atrophy through modulating protein degradation systems. In this context, there are some possible mechanisms by which AMPK activates protein degradation systems during unloading. FoxOs are transcriptional factors that regulate transcription of genes associated with skeletal muscle homeostasis including skeletal muscle atrophy (61, 65). Previous reports have suggested that AMPK-mediated modulation of FoxO3a expression and/or nuclear translocation contributes to activation of ubiquitin-proteasome and autophagy systems in skeletal muscle cells (52, 62, 73). Thus, it is possible that AMPK regulates protein degradation systems in unloaded-associated skeletal muscle atrophy through a FoxO3a-dependent mechanism. Phosphorylation of FoxO3a at Ser253 results in exclusion from the nucleus and thereby inhibits the transcription activity (8). In the present study, the phosphorylation level of FoxO3a at Ser253 was decreased by unloading in WT mice (Figure 6B), indicating increased FoxO3a activity. This result is consistent with previous reports (25, 65). On the other hand, no change in the expression of phosphorylated FoxO3a at Ser253 was observed during unloading in the suppression of AMPK activity (Figure 6B), suggesting that AMPK participates in the activation of FoxO3a during skeletal muscle unloading. Therefore, FoxO3a is a possible molecule related to AMPK-mediated up-regulation of protein degradation systems in response to unloading.

On the other hand, a recent study have suggested that nuclear factor-κB (NF-κB)
signaling is more important than FoxO signaling in disuse muscle atrophy (80), since NF-κB sites, but not FoxO sites, are required for the transcription of MuRF1 during hindlimb unloading. NF-κB is a transcriptional factor that is sequestered in the cytoplasm by a family of inhibitory proteins called IκBα (51). The IκB kinase complex phosphorylates IκBα, resulting in its degradation, thereby leading to nuclear translocation of NFκB and activation. It has been reported that disruption of NFκB prevents skeletal muscle atrophy induced by hindlimb unloading (29). In the present study, the expression of IκBα tended to decrease during muscle atrophy in WT mice, and the expression was high in AMPK-DN mice compared to WT mice after hindlimb unloading (Figure 6C). These results suggest that AMPK regulates NFκB signaling via the expression of IκBα during unloading-associated muscle atrophy and this might affect the different activation of ubiquitin-proteasome system including MuRF1 expressions. To our knowledge, this is the initial report to show the association of AMPK with NFκB signaling in muscle mass regulation.

HSP72 might be another candidate molecule involved in the regulation of AMPK-mediated protein degradation systems during unloading. HSP72 is one of the most prominent member of HSPs family and considered to have an important role in preventing skeletal muscle atrophy (64). In the present study, it was observed that HSP72 expression in AMPK-DN mice was high and decreased less by unloading compared to WT mice (Figure 6D). It has been reported that overexpression of HSP72 in skeletal muscle prevents immobilization-induced atrophy in rat (66). Furthermore, a molecular mechanism of the resistance to skeletal muscle atrophy by HSP72 seems to be that HSP72 directly prevents FoxO3a activation during unloading (65, 66). We have also previously demonstrated that AMPK negatively regulates HSP72 expression in
skeletal muscle cells and that HSP72 controls AMPK-mediated activation of ubiquitin-proteasome system (13). Considering these findings, it is suggested that a high expression of HSP72 due to the suppression of AMPK activity is a possible mechanism that attenuates the unloading-induced activation of protein degradation system, partly through FoxO3a deactivation.

It has been unclear how AMPK regulates HSP72 expression. We obtained the data that HSF1, a major transcriptional factor of HSPs in mammalian skeletal muscle (82), was down-regulated following hindlimb unloading in both mice (Figure 6E), suggesting that AMPK does not modulate HSF1 expression in unloading-induced skeletal muscle atrophy. This is supported by the previous data that pharmacological activation of AMPK did not affect HSF1 expression in skeletal muscle cells (13). Thus, we consider that AMPK-mediated regulation of HSP72 during hindlimb unloading is independent of HSF1.

It has been provided evidence that a multiple miRNAs are involved in regulation of skeletal muscle atrophy (77). We have also shown that AMPK-mediated inhibition of skeletal muscle hypertrophy is accompanied by up-regulation of miR-1 (13). Therefore, we considered that miRNAs might be potent mediators of AMPK-associated regulation of muscle mass during unloading. miRNAs are short and noncoding RNA molecules approximately ~20-25 nucleotides in length that suppress gene expressions by binding to the 3’-untranslated region of target mRNAs and either inhibit translation or promote cleavage of the transcript (1, 24). Recently, it has been shown that miR-23a suppresses post-transcriptionally MuRF1 and atrogin-1/MAFbx expression in vitro and that miR-23a overexpression in mouse skeletal muscle counteracts dexamethasone-induced muscle atrophy (76). Moreover, several reports have suggested that muscle-enriched...
miRNAs (miR-1, miR-133a, miR-206, miR-208b, and miR-499) are associated with modulation of skeletal muscle mass. miR-1 and miR-133a are down-regulated by unloading in human skeletal muscles (57). miR-1 appears to interact with FoxO3a activity through HSP72 during dexamethasone-mediated muscle atrophy (36). miR-206 is up-regulated by denervation-induced atrophy in mice skeletal muscle, and inhibition of miR-206 partially protects the atrophy (68). miR-208b (9) and miR-499 (2) are potential to repress the expression of myostatin, a well-known negative regulator of muscle growth (58). In the present study, miR-1 and miR-23a were down-regulated during unloading in WT mice, but these responses were not led in the suppression of AMPK activity (Figure 7). Thus, these two miRNAs, miR-1 and miR-23a, are potential to involve in the AMPK-mediated adaptation of muscle mass and its related molecules during unloading-induced atrophy. This is the first study to show the involvement of AMPK with miRNAs during atrophic condition, but knowledge about functions of the miRNAs during muscle atrophy is still limited and controversial. Our findings would help establish the function of miRNAs in regulating skeletal muscle mass.

In conclusion, we showed that the suppression of muscle-specific AMPK activity (mainly AMPKα2) partially attenuated unloading-induced atrophy of slow-twitch soleus muscle. The protective effect of muscle atrophy might be attributed to attenuation of the activity of ubiquitin-proteasome-mediated protein degradation. This is supported by the alterations of signaling molecules including FoxO3a, IκBα, HSP72, and miRNAs (miR-1 and miR-23a), although there is a limitation that these changes does not reflect dynamics of protein degradation directly. Overall, we suggest that AMPK is required for proper adaptation of muscle mass and its related molecules during skeletal muscle unloading. Further study is expected to clarify the effect of AMPK attenuation on
physiological parameters such as muscle strength for a better understanding of a role of AMPK in physiological muscle functions.
ACKNOWLEDGEMENTS

We thank Liu-Lin Tang, M.D., Ph.D., Toyohashi SOZO University, for his technical assistance, and Licht Miyamoto, Ph.D., Tokushima University, for his material and technical supports. Experiment handling with radioisotopes was carried out at the Radioisotope Research Center of Kyoto University.
This study was supported, in part, by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (TE and AG), Grants-in-Aid for Scientific Research from JSPS (Y Ohno, Y Ohira, TY, KG), a Research Grant from The Nakatomi Foundation (TE), The Descente Foundation for the Promotion of Sports Science (TE), and The Uehara Memorial Foundation (KG), The Naito Foundation (KG), and Graduate School of Health Sciences, Toyohashi SOZO University (KG).
648 DISCLOSURES

649 The authors state that there are no conflicts of interest.

650
REFERENCES

15. Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, and

31. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y,

32. **Kano Y, Poole DC, Sudo M, Hirachi T, Miura S, and Ezaki O.** Control of microvascular PO(2) kinetics following onset of muscle contractions: role for AMPK. *Am J Physiol Regul Integr Comp Physiol* 301: R1350-1357, 2011.

44. Miura S, Kai Y, Kamei Y, Bruce CR, Kubota N, Febbraio MA, Kadowaki

52. Nakashima K and Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. *Biosci Biotechnol Biochem* 71:

59. Sakamoto K, Goransson O, Hardie DG, and Alessi DR. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and

67. Sitnick M, Foley AM, Brown M, and Spangenburg EE. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. Journal of
applied physiology 100: 286-293, 2006.

82. Zhang Y, Huang L, Zhang J, Moskophidis D, and Mivechi NF. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation
Tables

Table 1

Changes in the plasma corticosterone level by hindlimb unloading.

<table>
<thead>
<tr>
<th>corticosterone (ng/ml)</th>
<th>C</th>
<th>HU ¶</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>318.7 ± 44.3</td>
<td>433.1 ± 64.4</td>
</tr>
<tr>
<td>AMPK-DN</td>
<td>355.7 ± 33.0</td>
<td>504.9 ± 58.0</td>
</tr>
</tbody>
</table>

Values are mean ± SEM; n = 7-8 per group.

¶: post hoc multiple comparison tests following two-way ANOVA showed that the overall differences were statistically significant between untreated control (C) and hindlimb unloading (HU) groups.

WT: wild-type littermates mice, AMPK-DN: mice overexpressed muscle-specific AMPK dominant-negative
Figure 1
Changes in the 5’AMP-activated protein kinase (AMPK) activity in soleus muscle in response to hindlimb unloading. (A) isoform-specific AMPK activity. (B) phosphorylated acetyl-CoA carboxylase Ser79 (p-ACC) and ACC. Representative immunoblots are shown. Values are mean ± SEM. n = 8 per group. †: post hoc multiple comparisons tests following two-way ANOVA showed that the overall differences were statistically significant between wild-type littermates (WT) mice and mice overexpressed muscle-specific AMPK dominant-negative (DN), ¶: post hoc multiple comparisons tests following two-way ANOVA showed that the overall differences were statistically significant between untreated control (C) and hindlimb unloading (HU) groups.

Figure 2
Changes in the body weight, soleus weight, and muscle fiber cross-sectional area (CSA) in response to hindlimb unloading. (A) body weight (BW). (B) soleus weight. (C) relative soleus weight to BW. (D) fiber CSA in soleus. (E) relative fiber CSA to BW2/3. (F) extensor digitorum longus (EDL) weight. (G) relative EDL weight to BW. (H) gastrocnemius-plantaris (GAS-PLA) complex weight. (I) relative GAS-PLA complex weight to BW. Representative images of immunofluorescence are shown. Scale bars indicate 20 μm. Values are mean ± SEM. n = 6-12 per group. *: post hoc simple effects tests following two-way ANOVA or Student’s t test showed that the
differences were statistically significant between the indicated groups. See Figure 1 for other abbreviations and symbols.

Figure 3

Changes in the protein synthesis in response to hindlimb unloading. (A) puromycin-labeled protein. Values are mean ± SD. n = 4 per group. (B) representative immunoblots of phosphorylated Akt Ser473 (p-Akt), Akt, phosphorylated 70-kDa ribosomal S6 kinase (p70S6K) Thr389 (p-p70S6K) and p70S6K. (C) p-Akt and Akt. Values are mean ± SEM. n = 8 per group. (D) p-p70S6K and p70S6K. Values are mean ± SEM. n = 8 per group. See Figure 1 for abbreviations and symbols.

Figure 4

Changes in the autophagy system in response to hindlimb unloading. (A) representative immunoblots of Unc-51-like kinase 1 (Ulk1), microtubule-associated protein 1 light chain 3 (LC3) and p62. (B) Ulk1. (C) LC3. (D) p62. Values are mean ± SEM. n = 8 per group. See Figure 1 and 2 for abbreviations and symbols.

Figure 5

Changes in the ubiquitin-proteasome system in response to hindlimb unloading. (A) ubiquitinated protein. The signal intensity of full-molecular-weight ubiquitinated proteins was quantified. (B) mRNA expression of muscle RING finger 1 (MuRF1) and atrogin-1/muscle atrophy F-box (MAFbx). (C) protein expression of MuRF1. Representative immunoblots are shown. Values are mean ± SEM. n = 8 per group. See Figure 1 and 2 for abbreviations and symbols.
Figure 6
Changes in the proteins associated with protein degradation in response to hindlimb unloading. (A) representative immunoblots of phosphorylated forkhead box class O (FoxO) 3a Ser253 (p-FoxO3a), FoxO3a, inhibitor of κBα (IκBα), 72-kDa heat shock protein (HSP72), and heat shock transcription factor 1 (HSF1). (B) p-FoxO3a and FoxO3a. (C) IκBα. (D) HSP72. (E) HSF1. Values are mean ± SEM. n = 8 per group. See Figure 1 and 2 for abbreviations and symbols.

Figure 7
Changes in the microRNA (miR) expressions in response to hindlimb unloading. (A) miR-1. (B) miR-23a. (C) miR-133a. (D) miR-206. (E) miR-208b. (F) miR-499. Values are mean ± SEM. n = 8 per group. See Figure 1 and 2 for abbreviations and symbols.
Figure 1

A. AMPK activity

B. p-ACC and ACC expression

WT C HU DN C HU
WT C HU DN C HU
WT C HU DN C HU

p-ACC
ACC
β-actin
Figure 2

Panel A: BW (g)

Panel B: soleus weight (mg)

Panel C: soleus weight/BW (mg/g)

Panel D: fiber CSA (μm²)

Panel E: fiber CSA/BW^{2/3} (arbitrary unit)

% change
Figure 2
Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Puromycin-labeled protein

Fold change

B

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B-Akt

Akt

B-p70S6K

p70S6K

B-β-actin

C

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-Akt

Akt

C-p70S6K

p70S6K

D

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-p70S6K

p70S6K

Figure 3
Figure 4

A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Ulk1

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>LC3I</th>
<th>LC3II</th>
<th>LC3II/LC3I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

p62

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5

A. Western blot analysis of ubiquitinated protein levels in WT and DN C57BL/6J mice under control (C) and HU conditions.

B. Graph showing fold change in MuRF1 and atrogin-1/MAFbx protein levels in WT and DN C57BL/6J mice under control (C) and HU conditions.

C. Western blot analysis of MuRF1 and β-actin protein levels in WT and DN C57BL/6J mice under control (C) and HU conditions.
Figure 6