Cooperative interaction between leptin and amylin signaling in the ventral
tegmental area for the control of food intake

Elizabeth G. Mietlicki-Baase, Diana R. Olivos, Brianne A. Jeffrey, and Matthew R. Hayes

Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

Running Head: VTA amylin/leptin interact to control energy balance

Corresponding Author: Elizabeth G. Mietlicki-Baase, 125 S. 31st St., Philadelphia, PA 19104, ebaase@mail.med.upenn.edu
Abstract

Peripheral co-administration of amylin and leptin produces enhanced suppression of food intake and body weight, but the central nuclei mediating these effects remain unclear. As each of these peptides controls feeding via actions at the ventral tegmental area (VTA), we tested the hypothesis that the VTA is a site of action for the cooperative effects of leptin and amylin on energy balance control. First, we show that intra-VTA injection of amylin and leptin, at doses of each peptide that are effective to reduce food intake and body weight when administered separately, produces an enhanced suppression of feeding when administered in combination. We also demonstrate that subthreshold doses of both amylin and leptin cause significant hypophagia and body weight loss when co-administered into the VTA. Additionally, we provide evidence that VTA amylin receptor blockade significantly attenuates the ability of intra-VTA leptin to reduce feeding and body weight gain. Together, these data provide the first evidence that the VTA mediates the interaction of amylin and leptin to cooperatively promote negative energy balance.

Keywords: obesity, mesolimbic, reward, IAPP
Introduction

Obesity represents a prevalent, costly health problem in the United States and worldwide (11, 43, 44), yet effective non-invasive treatment options for this disease are extremely limited. Many pharmacotherapeutic strategies to date have attempted to treat obesity by targeting a single feeding-related neuroendocrine system, but the vast majority of these monotherapy approaches have failed to produce meaningful and sustained reductions in body weight (41). Therefore, attention has turned to the notion that combination pharmacotherapies targeting more than one neuroendocrine feeding-relevant system may be more effective for the treatment of obesity (8, 49, 51).

The pancreatic hormone amylin has been identified as a leading candidate for the development of combination pharmaceutical strategies for the treatment of obesity (47, 51). Amylin acts centrally to promote negative energy balance (24, 50), and several reports have demonstrated that amylin can enhance the anorectic effects of other feeding-related signals in an additive, if not synergistic, manner (6, 10, 22, 35). Of particular interest, amylin cooperatively interacts with the adipose-derived hormone leptin to produce enhanced suppression of food intake and body weight (13, 15). This amylin-leptin interaction has been observed in rodents (13, 42, 48, 56, 57, 59) and humans (46, 48). Indeed, several studies demonstrate that peripheral administration of amylin and leptin (or agonists for their receptors) produces greater weight loss than either compound alone (48, 56, 59). Of critical importance for the treatment of obesity is the fact that although humans and rodent models exhibit reduced sensitivity to the energy balance effects of leptin in the
obese state (1, 39), amylin appears to restore leptin sensitivity (13, 48, 56), thereby improving weight loss when amylin and leptin are co-administered.

Although the body weight and food intake reductions produced by peripheral co-administration of amylin and leptin are clear, the central nervous system (CNS) nuclei mediating the interactive effects of these peptides to promote negative energy balance remain largely unknown. Much of the literature describing the hypophagic effects of amylin focuses on its ability to reduce food intake through actions at the area postrema (AP) of the hindbrain (26, 27, 34); however, this nucleus does not appear to mediate leptin’s anorectic effects (18, 59), making it unlikely that this site supports an interaction between leptin and amylin. Thus, it remains critical to investigate the role of other central amylin-responsive sites as a potential point of interaction for leptin and amylin signaling. Of note, the ventromedial nucleus of the hypothalamus has been shown to contribute, in part, to the interactive effects of amylin and leptin in the control of energy balance (20, 59), but the possible role of other amylin- and leptin-responsive CNS nuclei remains untested.

One potential site mediating the cooperative interaction between leptin and amylin is the ventral tegmental area (VTA) of the mesolimbic reward system. Recent studies have established the VTA as a physiologically and pharmacologically relevant site of action for the intake-suppressive effects of amylin (32, 33). Furthermore, leptin has been shown to act independently in the VTA to induce hypophagia in a physiologically relevant manner (14, 17). Together, these data highlight a possible role for the VTA in the interactive effects of amylin and leptin to suppress food intake and body weight. Here, we tested the ability of different dose
combinations of intra-VTA amylin and leptin to reduce feeding and body weight gain. We also evaluated whether endogenous VTA amylin receptor signaling is required to mediate the food intake- and body weight-suppressive effects of VTA leptin signaling.

Methods

Subjects. Adult male Sprague Dawley rats (Charles River Laboratories; 346.5 ± 32.4g at the start of experimental testing) were individually housed in hanging wire mesh cages in a temperature- and humidity-controlled environment (12h:12h light-dark cycle). Animals had *ad libitum* access to rodent chow (LabDiet, Laboratory Rodent Diet 5001) and water. All experimental procedures were approved by the University of Pennsylvania Institutional Animal Care and Use Committee. All experiments were within-subject, with each rat receiving all treatments in a counterbalanced Latin squares design.

Drugs. Rat amylin (American Peptide) and the amylin receptor antagonist AC187 (Bachem) were dissolved in artificial cerebrospinal fluid (aCSF; Harvard Apparatus). Leptin (NHPP) was dissolved in 0.01M sodium bicarbonate. The selected doses of drugs were based on the literature (17, 32, 33).

Surgery. Rats were anesthetized via intramuscular (IM) injection of a mixture containing ketamine (90 mg/kg), xylazine (2.7 mg/kg), and acepromazine (0.64 mg/kg) and placed into a stereotaxic apparatus. Each rat was surgically implanted
with a bilateral guide cannula aimed at the VTA (coordinates: ±0.5 mm lateral to
midline; 6.8 mm posterior to bregma, with internal cannula aimed 8.6 mm ventral to
skull). Guide cannulae (26-GA, Plastics One) were affixed to the skull with jeweler’s
screws and dental cement. Analgesic was provided for all surgeries (2 mg/kg
meloxicam). VTA cannula placements were histologically verified post-mortem by
injection of 100 nl pontamine sky blue ink. A representative image of unilateral VTA
injection placement is shown in Fig. 1C.

Intra-VTA co-administration of amylin and leptin. Rats with chronically implanted
VTA cannula were given a unilateral VTA injection of leptin or its vehicle (100 nl
0.01M sodium bicarbonate) followed by a second unilateral VTA injection of amylin
or its vehicle (100 nl aCSF) just before the onset of the dark phase. In separate
cohorts of animals, different doses of leptin and amylin were used to explore the
effects of different dose combinations (Experiment 1: 0.3 μg leptin and 0.4 μg
amylin; Experiment 2: 0.1 μg leptin and 0.04 μg amylin) on food intake and body
weight. Both injections were given into the same hemisphere of the VTA, and
injection days were separated by a minimum of 48 hours. For these studies, rats
were housed in a custom-made automated feedometer system in which a small
access hole in the hanging wire mesh cage leads to a food cup resting on an
electronic scale. Food cup weights were automatically recorded by computer
software (LabView) every 10 seconds for the 24 h test period, allowing for detailed
food intake and meal pattern analyses. The criteria for defining a meal were 0.25 g
or more of food intake and a minimum of 10 min between feeding bouts (31-33).
Food intake, meal size, and meal number were calculated over the course of the 24 h test period. Spillage was accounted for in food intake measurements by assigning a percentage of total crumbs to each meal/time bin corresponding to the percentage of total intake for that meal/time bin as previously reported (31-33). Twenty-four hour body weight gain was assessed by subtracting each rat’s body weight at the beginning of the 24 h test period from its body weight at the end of the test (to the nearest 0.1 g).

Intra-VTA co-administration of AC187 and leptin. Approximately one hour before lights-off, rats with indwelling VTA cannulae were each given a unilateral intra-VTA injection of the amylin receptor antagonist AC187 (0.1 μg) or vehicle (100 nl aCSF). One hour later, just before lights-off, each rat received a second unilateral VTA injection into the same hemisphere of the VTA, containing leptin (0.6 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). Food was unavailable between injections. After the second injection, preweighed food was returned to the rats, and 24 h food intake (accounting for spillage) and change in body weight were measured. A minimum of 48 hours separated subsequent treatments.

Statistical analyses. All statistical analyses were run using Statistica (StatSoft). The alpha level was set at $p<0.05$ for all experiments. For each study, repeated measures ANOVAs were conducted for each variable of interest (food intake, meal size/number, body weight). Each drug type (e.g., amylin, leptin, AC187) served as a within-subjects factor, with time as an additional within-subjects factor when multiple
time points were assessed within a single experiment. Statistically significant main
effects and interactions were probed using Student-Newman-Keuls post hoc
analyses.

Results

Intra-VTA doses of amylin and leptin that are independently effective to reduce food
intake produce an enhanced suppression of food intake when combined.

We evaluated whether amylin and leptin signaling interact in the VTA to control food
intake and body weight. We first selected doses of each peptide that, when
administered independently into the VTA, are suprathreshold for energy balance
effects (0.4 μg amylin and 0.3 μg leptin; Figs. 1 and 2). We tested the ability of these
intra-VTA doses of amylin and leptin, alone or in combination, to reduce feeding and
body weight gain in chow-fed rats (n=11). As expected, amylin alone and leptin
alone each reduced food intake throughout the 24 h test period (Fig. 1A; statistically
significant main effects of amylin and of leptin, ANOVAs $F_{1,13} \geq 25.37$, $p < 0.001$; main
effect of time, $F_{9,117} = 190.86$, $p < 0.0001$; interactions between leptin/time and
amylin/time, ANOVAs $F_{9,117} \geq 2.58$, $p < 0.01$; planned comparisons of vehicle/vehicle
vs. leptin/vehicle, $p < 0.05$ from 6-24 h; vehicle/vehicle vs. vehicle/amylin, $p < 0.05$ from
1-24 h). However, the combination of these doses of amylin and leptin produced a
reduction in chow intake that was greater than the effect of either hormone alone
(planned comparisons between leptin/amylin and all other conditions, $p < 0.05$ from 4-
24 h), suggesting that the VTA mediates the interactive effect of these peptides on
feeding. We also measured 24h body weight change in this study and found that a
combination of leptin and amylin significantly suppressed body weight gain over the 24h test (Fig. 1B; main effect of leptin, $F_{1,13}=13.58$, $p<0.01$; planned comparisons between vehicle/vehicle and leptin/amylin, $p<0.05$).

To probe the behavioral mechanisms underlying the suppression of food intake, we conducted meal pattern analyses. We found that meal size (Fig. 2A) was durably and robustly reduced by the amylin + leptin combination (statistically significant main effects of amylin and of leptin, ANOVAs $F_{1,13}\geq 10.98$, $p<0.01$; main effect of time, $F_{9,117}=11.99$, $p<0.0001$; interaction between amylin/time, $F_{9,117}=4.19$, $p<0.001$; planned comparisons between vehicle/vehicle and leptin/amylin, $p<0.05$ at 0.5-3 h and 12 h), whereas effects on meal number were only observed at one early time point and were relatively minor (Fig. 2B; statistically significant main effect of amylin, $F_{1,13}=21.78$, $p<0.001$; main effect of time, $F_{9,117}=73.55$, $p<0.0001$; interaction between amylin/time, $F_{9,117}=1.96$, $p<0.05$; planned comparisons between vehicle/vehicle and leptin/amylin, $p<0.05$ at 2 h). This suggests that the primary mechanism by which VTA amylin + leptin reduces feeding is likely through an enhancement of within-meal satiation signaling, with fewer effects on inter-meal satiety processes.

Combined intra-VTA injection of subthreshold doses of amylin and leptin significantly reduces chow intake and body weight gain.

The first study supported the hypothesis that the VTA is a site of action for the cooperative ability of amylin and leptin to promote hypophagia and suppress body weight gain. To further evaluate this effect, we conducted a similar experiment in a
separate group of rats (n=19) in which we delivered subthreshold doses of amylin (0.04 μg) and leptin (0.1 μg), alone, or in combination, directly to the VTA. Although at these doses, neither amylin alone nor leptin alone reduced feeding or body weight gain over the 24 h post-injection, intra-VTA injection of the combination of the two peptides significantly suppressed both food intake (Fig. 3A; main effects of leptin [F1,18=19.01, p<0.001] and amylin [F1,18=12.00, p<0.01]; interaction between amylin and leptin, F1,18=6.90, p<0.02; planned comparisons of vehicle/vehicle vs. leptin/amylin, p<0.05; vehicle/vehicle vs. leptin/vehicle or vehicle/amylin, p>0.05) and body weight gain (Fig. 3B; main effect of leptin, F1,18=15.23, p<0.01; planned comparisons of vehicle/vehicle vs. leptin/amylin, p<0.05; vehicle/vehicle vs. leptin/vehicle or vehicle/amylin, p>0.05). We again analyzed meal patterns and found similar results to the first amylin / leptin experiment, in that the combination of intra-VTA leptin and amylin significantly reduced meal size (Fig. 3C; main effect of leptin, F1,18=5.17, p<0.04; planned comparisons of veh/veh vs. lep/amy, p<0.05; vehicle/vehicle vs. leptin/vehicle or vehicle/amylin, p>0.05) but had no effect on meal number (Fig. 3D; no main effect of leptin or amylin and no significant interaction; all ANOVAs F1,18≤1.60, p>0.05). This further supports the notion that the VTA mediates the interactive effects of amylin and leptin on energy balance.

Pharmacological blockade of VTA amylin receptors attenuates the intake- and body weight-suppressive effects of intra-VTA leptin.

To begin to address the potential physiological relevance of the VTA for the cooperative energy balance effects of amylin and leptin, we tested whether
endogenous amylin receptor activity is required for the ability of intra-VTA leptin to reduce feeding and body weight gain. Rats (n=13) were given a direct VTA pretreatment injection of the amylin receptor antagonist AC187 (0.1 μg) or its vehicle (100 nl aCSF) followed one hour later by a second intra-VTA injection containing leptin (0.6 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). This dose of intra-VTA delivered AC187 was chosen for its ability to significantly attenuate suppression of food intake by systemic amylin agonist delivery, yet be subthreshold for effect on its own (33). Chow intake and body weight gain were measured for 24 h post-treatment. The selected dose of intra-VTA leptin decreased both 24 h chow intake and body weight. However, VTA amylin receptor blockade with AC187 significantly attenuated both the hypophagia (Fig. 4A; main effect of leptin, $F_{1,12}=45.15$, $p<0.0001$; interaction between AC187 and leptin, $F_{1,12}=7.57$, $p<0.02$; post hoc comparisons, vehicle/vehicle versus vehicle/leptin: $p<0.05$, vehicle/leptin versus AC187/leptin: $p<0.05$) and suppression of body weight (Fig. 4B; main effect of leptin, $F_{1,12}=18.45$, $p<0.01$; main effect of AC187, $F_{1,12}=13.07$, $p<0.01$; post hoc comparisons, vehicle/vehicle versus vehicle/leptin: $p<0.05$; vehicle/vehicle versus AC187/vehicle: $p>0.05$; vehicle/leptin versus AC187/leptin: $p<0.05$) produced by VTA leptin administration. This suggests that endogenous amylin is activating VTA amylin receptors to facilitate/enhance the anorectic and body weight-suppressive effects of VTA leptin signaling.
Several studies to date have established that peripheral administration of a combination of amylin and leptin produces effects on feeding and body weight that are additive or potentially synergistic in nature (48, 56, 57, 59). Both peptides act within the CNS to promote negative energy balance, with the actions of amylin on energy balance thought to be mediated exclusively by central nuclei (24). Therefore, it is critical to identify sites within the brain that support the interaction between these signals. The current findings demonstrate that the VTA is a novel central nucleus mediating the interaction of amylin and leptin to promote negative energy balance. Our data show that when amylin and leptin are co-administered directly into the VTA, the hypophagic and body weight-suppressive effects of the combination of the two peptides is greater than that of either peptide alone. This was observed with doses of amylin and leptin that, when administered separately, were either suprathreshold or subthreshold for effects on food intake and body weight. Additionally, meal pattern analyses demonstrated that the reductions in feeding produced by the combination of intra-VTA leptin and amylin were due to suppression of meal size, consistent with the roles of both amylin and leptin acting as satiation signals (16, 18, 23, 25). In thinking about the reduction in food intake produced by VTA delivery of amylin and leptin, it is important to rule out alternative explanations for the observed hypophagia. This effect is unlikely to be due to impaired locomotion, as activation of VTA leptin receptors (17) or VTA amylin receptors (33) does not produce lasting reductions in locomotor activity. Furthermore, VTA amylin receptor activation does not cause pica (33) and does not produce conditioned taste
avoidance (32), suggesting against the possibility that nausea/malaise causes the
reductions in food intake observed with VTA amylin receptor activation. Together,
these previous findings argue for a specific effect of VTA amylin + leptin on feeding
and body weight.

Leptin and amylin each can cross the blood-brain barrier (2-4), and within the
VTA, both amylin receptor and leptin receptor signaling are physiologically relevant
for energy balance control (17, 32, 33). Therefore, to begin to evaluate the potential
physiological relevance of the VTA for the interaction between these peptides, we
tested whether VTA amylin receptor blockade would attenuate the anorectic and
body weight-suppressive effects of intra-VTA leptin. Indeed, our findings indicate
that the reductions in chow intake and body weight gain produced by VTA delivery of
leptin are blunted by intra-VTA pretreatment with the amylin receptor antagonist
AC187. This hints at the possibility that activation of VTA amylin receptors by
endogenous amylin may be required for the full expression of the food intake- and
body weight-suppressive effects of VTA leptin receptor activation.

The present data describe a pharmacological and perhaps physiological role
for the VTA in mediating the combined effects of amylin and leptin on food intake
and body weight gain. The mechanism(s) underlying these effects is not yet known.
Although our knowledge of the downstream effects of each peptide alone in the VTA
is still somewhat limited, a few possible points of convergence are clear from the
literature. One potential mechanism by which these two peptide signals could be
integrated involves effects on dopaminergic signaling. Both amylin receptor and
leptin receptor signaling within the VTA impact the activity of the mesolimbic
dopamine system (14, 17, 32). Cooperative actions of VTA leptin and VTA amylin on
dopaminergic signaling to key afferent targets such as the nucleus accumbens (14,
32) or central nucleus of the amygdala (21) could mediate the combined effects of
these hormones on energy balance. A critical empirical question that remains to be
tested is whether amylin receptors and leptin receptors are co-expressed on
dopamine neurons within the VTA. Within the VTA, amylin receptors are highly
expressed on dopamine neurons (32), and VTA dopamine neurons also express the
leptin receptor at the mRNA level (17). However, the lack of a widely validated
antibody against the leptin receptor limits the ability to test for colocalization of these
receptors at the protein level. Given that leptin can regulate the activity of VTA
dopamine neurons via a presynaptic mechanism (55), it is also possible that leptin
acts presynaptically within the VTA to regulate dopamine signaling, while amylin acts
via a direct postsynaptic mechanism.

A related possibility is that amylin receptor and leptin receptor activation may
impinge on common intracellular signaling pathways within VTA neurons. The
intracellular signaling response to leptin within the VTA includes phosphorylation of
STAT3 (17) and ERK (58). Although the intracellular signaling cascade engaged by
VTA amylin receptor activation has not yet been established, amylin receptor
activation in other areas of the brain stimulates pERK (45) and also increases
pSTAT (59). As intracellular signaling pathways are known to be important points of
convergence for energy status signals, increased activation of one or more of these
signals through the actions of both amylin and leptin could contribute to the
enhanced energy balance effects produced by the combination of the peptides. In
fact, several *in vitro* reports demonstrate the ability of amylin and leptin to produce cooperative effects on common intracellular signaling pathways (36-38). Given that leptin can induce pSTAT3 in VTA dopamine neurons (17), an interesting possibility is that co-activation of the same dopamine neuron by amylin and leptin may result in a potentiated response through the activation of common intracellular molecules within a single dopaminergic cell. Such analyses are certainly warranted for future studies.

Obese animals have reduced sensitivity to the effects of leptin, indicated by a reduction in leptin-induced pSTAT3 in several key feeding-relevant nuclei (28, 39). This has limited the utility of leptin-targeting monotherapies for the treatment of obesity (5). However, amylin remains effective at reducing food intake and body weight in the obese state (7). In fact, the amylin analog pramlintide is FDA-approved for the treatment of diabetes, but has the additional effect of reducing food intake and body weight in obese individuals (12, 52, 53). This finding, along with the ability of amylin receptor signaling to enhance the body weight-lowering effects of other neuroendocrine signals (22), has led to the notion that the amylin system is a strong candidate for future anti-obesity drug development (30, 47, 51). Interestingly, the available data on the interactive effects of peripherally administered amylin and leptin suggest that amylin may improve leptin sensitivity (48, 56), highlighting the potential clinical utility of a combination of amylin- and leptin-targeting pharmacotherapies for more effective obesity treatment (9, 54). Given that a contributing factor to the development of obesity is the overconsumption of highly palatable, energy-dense foods (19), our finding that the VTA mediates the
cooperative effects of leptin and amylin on energy balance control is particularly intriguing, as this nucleus plays an important role in the control of palatable food intake and food reward (29, 40, 60). Although the current studies examined the effects of the VTA amylin/leptin combination on chow intake, an exciting extension of our findings will be to evaluate whether VTA delivery of amylin and leptin can also attenuate the intake of palatable foods such as a high-fat diet in both lean and diet induced obese animals.

Neuroendocrine signals are often studied in isolation, but in reality these hormones and neuropeptides interact in complex ways to regulate behavior and physiology. Understanding the mechanisms by which feeding-related peptides interact to control energy balance is critically important not only for furthering our understanding of the in vivo actions of the signals, but also potentially to develop more effective pharmacotherapies for obesity. Our data indicate that the VTA is a central site of action mediating the cooperative effects of amylin and leptin for the control of energy balance. This finding, along with recent reports identifying the importance of the hypothalamus for the effects of the combination of amylin and leptin (20, 59), highlight the importance of further investigation of the distributed neural substrates and mechanisms underlying this interaction.
Acknowledgments

The authors thank Amber Alhadeff, Ralph DiLeone, and Martin Myers for their valuable intellectual advice, as well as David Reiner and Lauren McGrath for technical assistance.

Grants

This research was supported by NIH-K01-DK103804 (E.G.M.-B.), a Penn Medicine Neuroscience Center pilot award (M.R.H.), and NIH-R01-DK096139 (M.R.H.).

Disclosures

The authors have nothing to disclose.
References

Figure 1. Cumulative food intake and 24 h body weight (BW) gain after intra-VTA administration of suprathreshold doses of amylin (0.4 μg) or its vehicle (100 nl aCSF) plus leptin (0.3 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). VTA delivery of amylin alone or leptin alone reduces chow intake, but the suppression of feeding produced by the combination of amylin and leptin is greater than the effect of either peptide alone (A). The combination of amylin and leptin also significantly reduces body weight gain (B). Within a time bin, # indicates statistical significance (p<0.05) compared to vehicle/vehicle, and * indicates significant difference (p<0.05) from all other conditions. The key in (A) also applies to (B). All data shown as mean ± SEM. A representative image of VTA injection placement (30 μm coronal section) is shown in (C).

Figure 2. Meal patterns after intra-VTA administration of suprathreshold doses of amylin (0.4 μg) or its vehicle (100 nl aCSF) plus leptin (0.3 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). The hypophagia produced by VTA amylin combined with VTA leptin shown in Figure 1 is driven primarily by reductions in meal size (A) rather than meal number (B). Within a time bin, # indicates statistical significance (p<0.05) compared to vehicle/vehicle, and * indicates significant difference (p<0.05) from all other conditions. The key in (B) applies to both panels. All data shown as mean ± SEM.
Figure 3. Food intake, body weight (BW) gain, and meal patterns after intra-VTA administration of subthreshold doses of amylin (0.04 μg) or its vehicle (100 nl aCSF) plus leptin (0.1 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). Although these doses of amylin and leptin do not impact 24h food intake when delivered separately, the combination of the two peptides significantly reduces feeding (A) by suppressing meal size (C). No effect on meal number was observed (D). Intra-VTA delivery of this dose combination of leptin and amylin also significantly reduces 24h BW change (B). *, p<0.05 compared to veh/veh. All data shown as mean ± SEM.

Figure 4. Chow intake (A) and body weight gain (B) after VTA administration of the amylin receptor antagonist AC187 (0.1 μg) or its vehicle (100 nl aCSF) plus leptin (0.6 μg) or its vehicle (100 nl 0.01M sodium bicarbonate). The intake- and body weight-suppressive effects of intra-VTA leptin are attenuated by VTA amylin receptor blockade. *, p<0.05 compared to veh/veh. †, statistically significant difference between veh/leptin and AC187/leptin (p<0.05). All data shown as mean ± SEM.
Figure 2

A

Cumulative meal size (g)

Time (h)

B

Cumulative meal number

Time (h)

Legend:
- Veh (100nl) / Veh (100nl)
- Veh / Amylin (0.4µg)
- Leptin (0.3µg) / Veh
- Leptin / Amylin

Statistical symbols:
- *
- #
Figure 3

(A) 24h chow intake (g) - Veh (100nl) / Veh (100nl), Veh / Amylin (0.04µg), Leptin (0.1µg) / Veh, Leptin / Amylin.

(B) 24h BW gain (g) - Veh / Amylin (0.04µg), Leptin / Amylin.

(C) 24h meal size (g) - Veh (100nl) / Veh (100nl), Veh / Amylin (0.04µg), Leptin (0.1µg) / Veh, Leptin / Amylin.

(D) 24h meal number - Veh / Amylin (0.04µg), Leptin / Amylin.
Figure 4

A. 24h chow intake (g)

- Veh (100nl) / Veh (100nl)
- Veh / Leptin (0.6µg)
- AC187 (0.1µg) / Veh
- AC187 / Leptin

B. 24h BW gain (g)

- Veh (100nl) / Veh (100nl)
- Veh / Leptin (0.6µg)
- AC187 (0.1µg) / Veh
- AC187 / Leptin

* denotes statistical significance compared to Veh (100nl) / Veh (100nl) group.