Deficiency of PTP1B in POMC neurons leads to alterations in energy balance and homeostatic response to cold exposure.

Running Title: Examination of Neuronal PTP1B in Cold-Induced Thermogenesis

Bart C. De Jonghe¹, Matthew R. Hayes², Ryoichi Banno¹, Karolina P. Skibicka², Derek J. Zimmer¹, Kerisha A. Bowen¹, Theresa M. Leichner², Amber L. Alhadeff², Scott E. Kanoski², Nicole E. Cyr⁴, Eduardo A. Nillni⁴, Harvey J. Grill², and Kendra K. Bence¹

¹Dept. of Animal Biology, School of Veterinary Medicine, and Dept. of Psychology, School of Arts and Sciences, Dept. of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104. ²Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02907

Address correspondence to:
Dr. Kendra K. Bence
kbence@vet.upenn.edu
phone: 215-746-2998
fax: 215-573-5186

Copyright © 2011 by the American Physiological Society.
ABSTRACT

The adipose tissue-derived hormone, leptin, regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold-intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T_C) and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared to wild type controls. POMC-Ptp1b^{−/−} mice were hypersensitive to leptin-induced food intake and body weight suppression compared to wild types, yet they displayed similar leptin-induced increases in T_C. Interestingly, POMC-Ptp1b^{−/−} mice had increased BAT weight and elevated plasma triiodothyronine (T3) levels in response to a 4-day cold challenge, as well as reduced SPA at 24 hours after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of spontaneous physical activity, and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.

Key words: phosphatase, leptin, energy expenditure, thermogenesis, thyroid
INTRODUCTION

The adipose tissue-derived hormone, leptin mediates effects on energy balance via suppression of food intake and stimulation of energy expenditure [for review, see (6)]. Within the arcuate nucleus of the hypothalamus (ARC), two distinct populations of neurons synthesize either agouti-related protein (AgRP), or pro-opiomelanocortin (POMC), and mediate opposing effects on energy balance. Circulating leptin activates these and other CNS neurons, leading to decreased food intake and increased energy expenditure, in part through simultaneous suppression of AgRP signaling and stimulation of POMC signaling. Deletion of the leptin receptor (LepR) in POMC neurons (POMC-Cre: LepRloxP/loxP) results in increased body weight and adiposity, hyperleptinemia, and altered hypothalamic neuropeptide expression (1, 45), demonstrating the importance of POMC neurons to energy balance control.

In addition to leptin’s effects on food intake and energy expenditure, the hormone also regulates thermogenesis and locomotor activity via central circuits. Mice lacking the leptin gene (ob/ob mice) have decreased body temperature and are cold-intolerant (50), yet these mice can survive at low temperatures (4°C) when properly acclimated (9). Leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT) and induction of UCP-1 expression (10, 11). However, data from mice lacking both leptin and UCP-1 (compound ob/ob. UCP-1–/–) suggest a more complex picture, namely that UCP-1 independent mechanisms, induced by either peripheral leptin or active thyroid hormone injections, can sufficiently rescue and maintain body temperature during cold exposure (52). The neurons which mediate the effects of leptin on body temperature are not clear, although they are likely to involve
activation of downstream melanocortin 3 and/or 4 receptors (MC3R/MC4R) within the
hindbrain and hypothalamus (46, 47, 65). Cold exposure induces a reversible
enhancement of leptin receptor mRNA expression in lean mice within the ARC (31).
Interestingly, a recent report found that selective re-expression of leptin receptors in
POMC neurons of leptin receptor-deficient \(db/db \) mice resulted in increased locomotor
activity (19), suggesting that leptin signaling in POMC neurons may be an important
regulator of physical activity.

The leptin signaling pathway is tightly controlled by tyrosine phosphorylation [for
review, see (34, 54)]. Protein tyrosine phosphatase 1B (PTP1B) is an important negative
regulator of leptin signaling that acts via direct dephosphorylation of Janus kinase 2
(Jak2) (7, 35, 60). Consistent with a role for PTP1B in the inhibition of leptin signaling,
whole-body and brain-specific \(\text{Ptp1b}^{-/-} \) mice are lean and resistant to diet-induced obesity
(DIO) due to increased energy expenditure (22, 40). \(\text{Ptp1b}^{-/-} \) mice are leptin hyper-
sensitive, as demonstrated by increased hypothalamic phosphorylated signal transducer
and activator of transcription 3 (pStat3) activation and enhanced suppression of food
intake and body weight in response to exogenous leptin (7, 60). These studies, along
with notable associations between PTP1B polymorphisms and Type 2 diabetes in humans,
have identified PTP1B as an attractive therapeutic target for obesity, diabetes, and
metabolic syndrome (5, 14, 15, 32, 33, 39, 62, 64).

Although PTP1B is ubiquitously expressed, PTP1B is highly enriched in the ARC,
an important site of leptin action (60). We have recently reported that POMC neuron-
specific deletion of PTP1B (POMC-\(\text{Ptp1b}^{-/-} \)) in mice results in reduced high-fat diet-
induced body weight and adiposity, lower serum leptin levels, increased energy
expenditure, and improved leptin sensitivity (2). Although body weights were similar between POMC-Ptp1b$^{-/-}$ and wild type mice on a low-fat chow diet, leptin sensitivity is improved in POMC-Ptp1b$^{-/-}$ mice under these conditions. However, it is unknown what role POMC PTP1B signaling has in mediating leptin’s effects on physical activity and core temperature.

Given the links between POMC neuron leptin signaling and thermogenesis and physical activity in mice, we sought to examine the thermoregulatory and locomotor responses of leptin-hypersensitive POMC-Ptp1b$^{-/-}$ mice to exogenous leptin or sustained cold exposure (4°C) compared to littermate controls. We also examined BAT markers of thermogenesis, as well as plasma thyroid hormone, ghrelin levels, hypothalamic thyroid releasing hormone (TRH), and growth hormone secretagogue receptor (GHS-R) mRNA in cold-exposed animals to assess potential genotypic differences in the homeostatic response to cold.
METHODS

Animals

Five-month old, male, Ptp1bloxP/loxP POMC-Cre mice (hereafter termed POMC-

Ptp1b−/−), and Ptp1bloxP/loxP (hereafter termed Ptp1b+/+) “wild-type” littermate controls

were used for the following experiments. Mice were generated and genotyped by PCR as

previously described (2). Mice were housed individually in small plastic bins in a

temperature and humidity controlled room following a 12-h light/12-h dark cycle (lights

on at 0800h). Animals were maintained on pelleted chow (Lab Diet 5010) and water was

available ad libitum, unless otherwise indicated. All protocols and procedures were

approved by the institutional care and use committee (IACUC, University of

Pennsylvania).

Telemetric transponder surgery

Mice were anesthetized with ketamine (90 mg/kg; IM) prior to surgery. Under

anesthesia, miniature telemetric transponders (G2 VitalView; Mini Mitter/Respironics,

Bend, OR) were implanted within the abdominal cavity, according to a slightly modified

procedure as described in (46), in order to electronically record core temperature (T\textsubscript{C}) and

spontaneous physical activity (SPA).

Metabolic measurements during leptin treatment or 4-day cold exposure

Following a 1 week recovery period from surgery, baseline measurements of food

intake (FI), body weight (BW), T\textsubscript{C} and SPA were taken for 2 d with ad libitum access to

food and water, followed by 2 d of measurements with no access to food during the light
Next, mice (POMC-Ptp1b\(^{-/-}\), n=8; Ptp1b\(^{+/+}\), n=9) were treated with exogenous mouse recombinant leptin (1µg/g BW, every 12 h, for a total of 2 µg/g BW per day, i.p.) over 2 d, with food and water available ad libitum. This relatively low dose of leptin was used in order to prevent maximal effects in the control animals, which may have masked any enhanced effects in POMC-Ptp1b\(^{-/-}\) mice (2). In a second experiment, a new cohort of mice (POMC-Ptp1b\(^{-/-}\), n=6; Ptp1b\(^{+/+}\), n=6) were individually housed and allowed to acclimate for 2 d inside a thermally controlled chamber set at 23°C followed by 4 d set at 4°C. These mice had free access to food and water and were not leptin-treated. Upon the completion of cold exposure, these mice were euthanized via CO\(_2\) inhalation and sacrificed for trunk blood collection, tissue extraction and analysis.

The mouse cages were placed on recording platforms for the indicated periods of either leptin-treatment or 4°C cold exposure. \(T_C\) data were collected every 5 min and SPA was recorded as cumulative activity counts every 30 seconds as previously described (18, 46). For analysis, the dark and light cycle data were averaged for a 12 h period and analyzed separately. FI and BW were measured daily at lights on.

Tissue collection, RNA extraction and real-time PCR

Cold-exposed mice were sacrificed immediately following 4 d cold exposure. An additional set of 4 d cold exposed mice not implanted with telemetric transponders (POMC-Ptp1b\(^{-/-}\), n=7; Ptp1b\(^{+/+}\), n=4) were subjected to the same experimental procedure and sacrificed for tissue analysis. Data between non-implanted and implanted mice were similar and thus pooled for subsequent analysis. A cohort of non-cold exposed mice (i.e., maintained at room temperature) were age-matched when sacrificed (POMC-Ptp1b\(^{-/-}\),
n=10; Ptp1b+/+, n=7) and used as a control group for tissue analysis. Epididymal white adipose tissue (WAT), intrascapular brown adipose tissue (BAT) and whole hypothalamus were carefully dissected, weighed, and flash frozen in liquid nitrogen at sacrifice.

For gene expression studies, total RNA was extracted from BAT and hypothalamus using TRIzol (Invitrogen) and the RNeasy kit (Qiagen). cDNA was synthesized from 1 μg total RNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The relative mRNA levels of BAT UCP-1, UCP-2, UCP-3, COX-2, and hypothalamic pro-TRH and GHS-R were quantified by quantitative real-time PCR. Mouse β-actin (VIC-MGB, #4352341E Applied Biosystems) or Hprt1 (PPM03559E, SABiosciences) were used as an internal control. PCR reactions were carried out using TaqMan gene expression kits (UCP-1: Mm00494069_m1, UCP-2: Mm00627599_m1, UCP-3: Mm01163394_m1, GHS-R: Mm00616415_m1) or SYBR Green PCR reagents from Applied Biosystems. Hypothalamic pro-TRH mRNA was assessed via custom assay (38), using the following primers: upstream pro-TRH, 5′ GGAGAGGTTGCTTTAATGCCT-3′; downstream pro-TRH, 5′ GGCTGTTTGGACCACAAAGTCC-3′. COX-2 mRNA was examined via a custom assay used previously by Ukopec et al. (51) with the following primers: Forward-GCCAATAGAACTTCCAATCCGTATAT, Reverse-TGGTCGGTTTGATGTTACTGTTG, 5′-FAM Probe CTGATGCCATCCCAGCGACTAA (Applied Biosystems). Samples were analyzed using the Eppendorf Mastercycler® ep realplex. Relative mRNA expression was calculated using the comparative Ct method as described previously (4).
Hematoxylin-Eosin staining

In a random subset of cold-exposed mice (POMC-Ptp1b−/−, n=6; Ptp1b+/+, n=6), BAT post-fixed in 10% formalin was embedded in paraffin and cut into 4 µm sections via microtome and mounted onto slides. H&E staining was performing using SelecTech reagents (Surgipath/Leica Biosystems). Slides were dipped into HE 560 for 4 min followed by 1 min wash (dH20), and then submerged in Define solution for 20 s. After 1 min wash, slides were dipped in Blue Buffer 8 (diluted 1:10) for 40 s. A final 1 min wash was performed before slides were exposed to Alcohol Eosin Y515 for 25 s. Slides were then dehydrated via 95%, 100% ethanol, and xylene before coverslipping. Images of slides were captured using a Nikon 80i fluorescence microscope and CCD camera at 20X magnification, and viewed using NIS elements software. Color images were taken on a Nikon E600 with a Nikon Coolpix color camera. Cell areas, diameters, and perimeters were measured using the object measurement tool (NIS elements). Only cells within the plane of focus and containing a clearly defined outer perimeter were selected for measurement. On average, 50-60 cells per animal were selected.

Thyroid hormone and ghrelin measurements

Serum triiodothyronine (T3) and thyroxine (T4) levels in mice (cold-exposed POMC-Ptp1b−/−, n=9; cold-exposed Ptp1b+/+, n=10; non-exposed POMC-Ptp1b−/−, n=6; non-exposed Ptp1b+/+, n=6) were assessed by radioimmunoassay and calculated according to the procedures and reagents provided by ICN Pharmaceuticals (Costa Mesa, California, USA) and Monobind Inc. (Costa Mesa, California, USA), respectively. The
sensitivities of the T3 and T4 assays were 5.3 pg/ml and 0.16 ng/ml, respectively, and the
intra- and interassay variabilities were approximately 5–7% and 10–11%, respectively.

Deiodinase activity assays were performed according to Richard et al. 1998 (41) on cold-
exposed mice. Briefly, extracted BAT tissue was homogenized in P100E2D10 [100 mM
sodium phosphate (pH 7.2), 2 mM EDTA, 10 mM DTT]. Total protein concentrations
were determined using a Bradford assay. Type 2 iodothyronine deiodinase (D2) activity
in BAT samples was assayed using P100E2D25 and [3’5’-125I]-T4 (3,000 cpm) with 100
mM 6-propyl-2-thiouracil (PTU [sigma p3755] to block D1 activity) and 1 µM T3 (to
block D3 activity) in a total reaction volume of 0.5 ml. Samples were incubated at 37°C
for 60 min and reactions were stopped with 0.2 ml ice-cold methanol. Samples were then
centrifuged at 3200 rpm for 30 min, 0.4 ml of supernatant was removed and counted for
radioactivity. For all samples, 0.7 mg of protein was used. All samples were run in the
same assay on the same day.

Plasma ghrelin measurements were performed in an additional set of age-matched
male mice (POMC-Ptp1b+/_, n=6; Ptp1b+/+, n=6) using a within-subjects design at room
temperature and immediately following 24 hr cold exposure. Blood was drawn via
mandibular vein bleed and collected in separate EDTA tubes for measurements of
unacylated and acylated ghrelin. For acylated ghrelin, p-hydroxymercuribenzoic acid (1
mM) was added to tubes to prevent degradation. These samples were then centrifuged at
3,500 rpm for 10 min at 4°C and supernatants transferred to separate tubes containing
100 µL of 1N HCl/mL of collected plasma, then centrifuged again for 5 min and
transferred to new tubes. Plasma unacylated and acylated ghrelin were analyzed via EIA
kits (ghrelin: #10008953; acylated ghrelin: #10006307, Cayman Chemical).
Statistics

All data are expressed as means ± SEM. For statistical analyses, leptin treatment days were compared to the second day of *ad libitum* food available, which served as baseline. In the cold exposure experiment, cold exposure days were compared to the second day of room temperature acclimation as baseline. Percent suppression of body weight from baseline due to leptin was calculated using the following formula: percent suppression = $1 - \frac{\text{experimental}}{\text{baseline}} \times 100$. Appropriate one or two-way ANOVA, with repeated measures where necessary, assessed the statistical difference between mean values (SAS 9.2, SAS Institute Inc., Cary, NC). Tukey’s HSD was used for post-hoc comparisons when applicable.
RESULTS

Differential leptin responses between POMC-Ptp1b^{–/–} and Ptp1b^{+/+} control mice.

Leptin significantly reduced food intake in POMC-Ptp1b^{–/–} mice on the second day of leptin injections, while Ptp1b^{+/+} mice showed no change in intake (FIG. 1A).

POMC-Ptp1b^{–/–} mice also showed a significant reduction in BW following leptin treatment, while control mice did not (FIG. 1B). These data support previous findings in these animals of hypersensitivity to low doses of peripherally administered leptin (2).

Leptin increased T_C in the light phase on Day 1 of treatment equally between genotypes (FIG. 1C). No effect on SPA in either genotype was noted following administration of this dose of leptin in the light or the dark cycle (FIG. 1D).

POMC-Ptp1b^{–/–} mice show similar changes in FI, BW and T_C following cold exposure, but greater inhibition of SPA compared to Ptp1b^{+/+} controls.

Exposure to cold (4°C) significantly increased food intake in both POMC-Ptp1b^{–/–} and Ptp1b^{+/+} mice to a similar magnitude across all 4 days (FIG. 2A). Similarly, all mice reduced core body temperature to a significant extent over the 4-day duration of cold exposure, and were able to maintain a reduced core temperature during cold exposure in both light and dark cycles (i.e., no individual mouse was unable to acclimate to the cold) (FIG. 2B). Finally, SPA was significantly decreased by cold exposure in both POMC-Ptp1b^{–/–} and Ptp1b^{+/+} mice during the dark phase; however, alterations in SPA by cold exposure differed by genotype. POMC-Ptp1b^{–/–} mice significantly inhibited SPA in the dark cycle beginning on the first day of cold exposure, and subsequently on days 3 and 4, while in Ptp1b^{+/+} mice, decreased SPA in the dark cycle was only evident on days 3 and 4.
Examination of Neuronal PTP1B in Cold-Induced Thermogenesis

(FIG. 2C). No effects on BW were observed in response to cold on individual exposure days *data not shown*.

Cold exposure increases BAT weight in POMC-Ptp1b–/– mice, but not in Ptp1b+/+ controls.

Body weights between age-matched control cohorts of non-cold exposed POMC-Ptp1b–/– and Ptp1b+/+ mice at room temperature were no different than cold-exposed mice, regardless of genotype (FIG. 3A). Four-day cold exposure significantly reduced WAT weight of both POMC-Ptp1b–/– and Ptp1b+/+ mice (FIG. 3B). In contrast, BAT weight in cold-exposed POMC-Ptp1b–/– mice was significantly greater than in cold-exposed Ptp1b+/+ mice, as well as non-exposed POMC-Ptp1b–/– mice. No differences in BAT weights were observed between cold-exposed or non-exposed Ptp1b+/+ mice (FIG. 3C). Further examination of BAT cell parameters in cold-exposed mice showed significant increases in POMC-Ptp1b–/– BAT cell area, diameter, and perimeter relative to cold-exposed Ptp1b+/+ mice (FIG. 3D, right). Results of Hemotoxylin-Eosin staining of BAT illustrate the hypertrophy of BAT cells, as well as diminished presence of lipid droplets, following cold exposure in these mice (FIG. 3D, left).

Increased cold-induced thyroid hormone levels in POMC-Ptp1b–/– vs. Ptp1b+/+ mice.

mRNA expression of several markers of BAT thermogenesis was shown to be increased following cold exposure in both genotypes; UCP-1, UCP-2, UCP-3 and COX-2 levels in BAT all exhibited enhanced expression compared to room temperature controls in both POMC-Ptp1b–/– and Ptp1b+/+ mice (FIG. 4). UCP-2 was significantly higher in
POMC-Ptp1b+/− vs. Ptp1b+/+ mice at room temperature. Although not reaching statistical significance, an interaction trend was observed for increased UCP-2 levels in cold-exposed POMC-Ptp1b+/− mice compared to cold-exposed Ptp1b+/+ controls (P=0.06). Plasma levels of active thyroid hormone T3 were elevated in 4 day cold-exposed POMC-Ptp1b+/− mice relative room temperature POMC-Ptp1b+/− mice, as well as to cold-exposed Ptp1b+/+ controls (FIG. 5A). Plasma levels of T4 were similar between all conditions and genotypes (FIG. 5B). Correspondingly, a trend toward increased BAT D2 activity was detected in cold-exposed POMC-Ptp1b+/− mice relative to Ptp1b+/+ mice (P=0.058) (FIG. 5C). Hypothalamic mRNA expression of pro-TRH was upregulated in 4 day cold-exposed mice (FIG. 5D), however no statistical differences were observed between genotypes. Additionally, GHS-R expression was increased similarly between POMC-Ptp1b+/− mice and Ptp1b+/+ mice following 4 day cold-exposure (FIG. 5E). In 24 hr cold-exposed mice, no differences were observed in unacylated plasma ghrelin (POMC-Ptp1b+/−: 1531 ± 133 pg/ml vs. Ptp1b+/+: 1294 ± 140 pg/ml) or acylated ghrelin (POMC-Ptp1b+/−: 836 ± 101 pg/ml vs. Ptp1b+/+: 887 ± 131 pg/ml). Similarly, POMC-Ptp1b+/− mice and Ptp1b+/+ mice did not have differences in the levels of unacylated or acylated plasma ghrelin at room temperature (data not shown).

(data not shown)

DISCUSSION

Overall, our results show that deficiency of PTP1B in POMC neurons contributes to short-term cold-induced reduction of spontaneous physical activity, and an upregulation of thyroid activity, independent of UCP-1-mediated thermoregulation in BAT. If POMC neurons mediate leptin-induced increases in core temperature, either solely or in part, we would expect leptin-hypersensitive PTP1B-deficient mice to show significantly elevated core temperature over controls in response to exogenous leptin. However, POMC-Ptp1b^{−/−} mice showed similar leptin-induced increases in core temperature compared to controls despite enhanced leptin-induced suppression of food intake and body weight compared to Ptp1b^{+/+} controls, suggesting that Ptp1b in POMC-expressing neurons may not be critical mediators of leptin’s effects on core temperature at low doses. Finally, PTP1B-deficiency in POMC neurons resulted in mice with increased BAT weight and T3 levels following cold exposure, which indicates that POMC-Ptp1b^{−/−} mice may need to invoke a more robust thermogenic response to cold in order to maintain their body temperature.

Recent data from our lab examining PTP1B in POMC cells support a critical role for these neurons in mediating high-fat diet (HFD) induced increases in body weight, body temperature and energy expenditure (2). On a chow diet, POMC-Ptp1b^{−/−} mice do not show differences between wild type controls in adiposity, food intake or BW. Despite this similarity, chow-maintained POMC-Ptp1b^{−/−} mice exhibit hypersensitivity to exogenous leptin as demonstrated by enhanced suppression of food intake and body weight, as well as increased POMC pStat3 activation, compared to wild type mice. When comparing POMC-Ptp1b^{−/−} mice to controls in the current data, we again show
exogenous leptin induces greater decreases in food intake and BW, however we do not see differential effects on leptin-induced core temperature between genotypes. In addition, SPA was not altered by leptin in either genotype. This apparent disconnect between sensitivities of energy intake vs. output parameters in response to leptin injection could indicate that either PTP1B does not regulate leptin’s effects on core temperature, or POMC neurons are not the primary mediators of leptin’s effects on core temperature. For the SPA measurements, it is possible that the dose of leptin used in our study is not sufficient to affect activity. For example, in the ob/ob mouse, leptin administered at low doses normalizes glucose homeostasis without changing food intake or body weight. In contrast, large doses of leptin are required to normalize lower body temperatures and VO2 seen in these mice (37).

Recent data suggest a role for POMC neurons in the regulation of body temperature and activity. For example, animals lacking LepR in AgRP and POMC neurons (AGRP+POMC:Lepr–/– mice) show reduced body temperature, as well as locomotor activity (53). Unfortunately, the thermal or activity effects of LepR knockdown in only POMC neurons remain unknown. Additionally, POMC neurons may regulate thermogenic responses of leptin through central glucose sensing (53). We have also recently reported that POMC-Ptp1b−/− mice exhibit higher body temperatures when maintained on HFD (2). Given our current results, we speculate that at low doses of leptin in chow fed mice, PTP1B in POMC neurons does not affect leptin-induced increases in Tc; however, in cases of chronically high circulating leptin levels (such as those achieved on a HFD), inactivation of Ptp1b in POMC neurons could result in elevated body temperature via enhanced leptinergic stimulation of POMC neurons.
Leptin-induced increases in locomotor activity are likely regulated in large part through POMC neuron activation. Restoration of LepR in the ARC of LepR null-mice robustly increases voluntary physical activity (12). Further, when LepR signaling in \textit{db/db} mice is restored within POMC neurons specifically, a similar increase in activity is observed (19). However, neither of these studies reported potential alterations in core body temperature as a result of LepR signaling reinstition, thus providing few clues as to the role of LepR signaling in POMC-induced thermogenesis. The dose of leptin examined here did not affect SPA, even in wild type control animals. It must be noted that in the studies mentioned above, increases in SPA after restored POMC-neuron leptin signaling was observed as the rescue of an activity deficit relative to controls (i.e., baseline activity in \textit{db/db} or LepR null-mice was significantly lower than in normal mice). Since baseline SPA in POMC-Ptp1b−/− mice is similar to controls, a failure to increase SPA due to leptin may not be unexpected as there is no inherent deficit in POMC-Ptp1b−/− mice requiring “rescue.” [see Figure 1 or (2)].

POMC-Ptp1b−/− and Ptp1b+/+ mice showed similar increases in food intake and decreases in body temperature following cold exposure, suggesting the POMC-Ptp1b−/− mice are not different relative to controls in defending body temperature when cold-stressed for four days. In contrast, POMC-Ptp1b−/− mice reduce dark phase physical activity in response to cold significantly earlier than in control mice. This observed difference suggests altered behavior to initial cold exposure in order to acclimate to lower temperatures. Indeed, \textit{ob/ob} mice will die when maintained at 4°C, unless acclimated by successive decreases in environmental temperature (9). It is possible that in cold-exposed POMC-Ptp1b−/− mice, overall core temperature is maintained at a level similar to controls
through a relatively heightened increase in thermoregulation response, at the expense of spontaneous activity. That is, it may be that the animals show less initial movement because they are more efficiently engaging homeostatic thermogenic mechanisms to maintain core temperature. Consistent with this notion, examination of SPA using average activity in 5-min bins during the first 24 h of cold showed that POMC-Ptp1b^{−/−} mice tend to decrease activity more quickly than in controls within the first few hours of dark (see Supplemental Figure).

It has been shown previously in the rat that ghrelin administration can cause decreased physical activity (49). Mouse models of ghrelin/GHS-R deficiency, however, provide conflicting data on the role of ghrelin in locomotor activity and thus its role remains controversial. For example, ghrelin-null mice are reported to have higher spontaneous activity on HFD (58), while another report shows the opposite in GHR-S mice (66). Recent evidence from Komori et al. suggests a potential link between leptin stimulation and the downregulation of hypothalamic GHS-R expression (24), raising the possibility that GHS-R expression may be lower in leptin hypersensitive POMC-Ptp1b^{−/−} mice compared to Ptp1b^{+/+} mice. Here we have shown that hypothalamic GHS-R expression is increased in cold-exposed mice, but there was no effect of genotype. Similarly, no differences in plasma ghrelin were noted between genotypes. Thus, our current data do not suggest a role of ghrelin/GHS-R pathways in the differential reduction of spontaneous activity during cold exposure between POMC-Ptp1b^{−/−} and Ptp1b^{+/+} mice.

Our findings of increased BAT weight and cell hypertrophy in cold-exposed POMC-Ptp1b^{−/−} compared to Ptp1b^{+/+} mice suggest altered thermogenic capacity of BAT
In POMC-Ptp1b mice, it is clear the BAT undergoes hypertrophy in response to cold (16, 61), which signifies increased thermogenesis. It is also likely that intact hypothalamic LepR signaling is required for maintaining cold tolerance (30). Both leptin (10, 44) and cold exposure (17, 21) are potent inducers of BAT mitochondrial Uncoupling Protein 1 (UCP-1), which can largely mediate thermoregulation of body temperature. Our data show no differential induction of BAT UCP-1 mRNA expression between cold-exposed POMC-Ptp1b compared to Ptp1b mice, suggesting UCP-1 independent pathways may play a role in the thermogenic response to cold in POMC-Ptp1b mice.

UCP-1 independent pathways, induced by either leptin or thyroid hormone injections, can sufficiently rescue body temperature in the absence of BAT UCP-1 activation in cold-exposed animals (52). Furthermore ob/ob and double mutant ob/ob.UCP-1 mice show no differences in adiposity, energy expenditure, or obesity phenotypes, suggesting that UCP-1-induced thermogenesis in BAT does not play a role in the mediation of leptin effects on energy balance. Presumably, POMC-induced stimulation of BAT thermogenesis occurs following downstream melanocortin activation of sympathetic projections via MC4R expressing neurons originating within the forebrain and hindbrain (48, 56, 57). Although we have previously reported that α-MSH within the ARC, and α-MSH containing projections to the paraventricular nucleus of the hypothalamus (PVH) in POMC-Ptp1b mice are similar to controls (2), it is possible that downstream effects, such as MC4R activation in the PVH and/or hindbrain may be altered, leading to increased cold-induced activation of sympathetic outflow to BAT in POMC-Ptp1b animals. It is also possible that the hypothalamic-pituitary-thyroid axis
is upregulated in our mice. Indeed, plasma levels of T3 were increased in POMC-Ptp1b^{−/−} mice compared to Ptp1b^{+/+} mice. Furthermore, D2 activation, required for thermogenesis through local BAT T3 production (13), showed a trend towards increased activity in POMC-Ptp1b^{−/−} mice, suggesting a possible upregulation of thyroid hormone action at the level of BAT in these animals.

Thyrotropin releasing hormone (TRH) is released from PVH neurons in response to leptin, both directly (via LepR activation) and indirectly (via MC4R activation by leptin-induced α-MSH signaling), as well as through cold-induced adrenergic stimulation via norepinephrine (NE) containing neurons of the hindbrain [see (36) for review]. The downstream effects of TRH release include increased thyroid stimulating hormone (TSH) release from the anterior pituitary and increased circulating thyroid hormone levels. It is possible that enhanced T3 levels in POMC-Ptp1b^{−/−} mice, and perhaps local T4 to T3 conversation in BAT, are a result of increased cold-induced stimulation of the HPT, via increased sensitivity to TRH, either through actions of greater NE stimulation of TRH neurons and/or sensitivity to downstream effects of endogenous leptin. Recent findings have shown that dorsomedial hypothalamic LepR containing neurons project to BAT via connections through hindbrain nuclei where a population of thermoregulatory circuits are located, suggesting that hypothalamic LepR activation contributes to thermoregulation, in part, via the hindbrain (63). Similarly, leptin may interact with TRH in the activation of hindbrain thermogenesis (3, 42, 43) by “priming” hindbrain neuron responses to TRH in the nucleus of the solitary tract (NTS). Although the current data show similar increases in hypothalamic mRNA expression of TRH in POMC-Ptp1b^{−/−} and Ptp1b^{+/+} mice following cold exposure, it may be possible that comparable cold-induced release of
endogenous TRH could produce enhanced thermogenic stimulation in leptin hypersensitive POMC-Ptp1b^{−/−} mice relative to controls. This would support the notion of increased sensitivity of thyroid signals in thermogenesis, the increased conversion of plasma T4 to active T3, and an increase in BAT D2 activity relative to controls. We did not directly assess the absolute requirement of elevated T3 on the induction of BAT thermogenesis in our model, however, T3 action within the CNS has been shown to increase BAT thermogenesis via sympathetic β-adrenergic receptors, and is essential for regulating many markers of thermogenesis in BAT (28). Therefore, while the net thermoregulatory phenotypes between POMC-Ptp1b^{−/−} and Ptp1b^{+/+} mice are largely similar in response to cold exposure, POMC-Ptp1b^{−/−} mice appear to show an enhanced ability to upregulate sympathetic controls of thermogenesis in BAT via downstream effects of higher T4 to T3 conversion.

Our results also show an increase in UCP-2, UCP-3 and COX-2 in BAT of all cold-exposed animals, though no significant difference in cold-induced increases were observed between POMC-Ptp1b^{−/−} and Ptp1b^{+/+} mice. UCP-2 mRNA levels were elevated in POMC-Ptp1b^{−/−} compared to Ptp1b^{+/+} mice, the significance of which is unclear. Whole-body deficiency of PTP1B in mice results in increased mRNA expression of BAT UCP-1, UCP-2 and UCP-3 in as well as UCP-1 protein expression, AMP-activated protein kinase (AMPK) activity and mitochondrial density (59). Coupled with the current data, it may be that increased UCP-2 in whole-body PTP1B knockouts could be related to POMC PTP1B-deficiency. Centrally, UCP-2 has recently been shown to regulate peripheral glucose homeostasis, potentially via modulation of hypothalamic MCH neuron activity (25). The role of UCP-2 in BAT per se is less clear, however acute
T3 injections have been shown to increase UCP-2 levels in isolated liver cells and heart tissue (26, 27, 55).

Conclusions

Whole-body and POMC-neuron specific PTP1B knockout mice exhibit a negative energy balance phenotype, in large part through enhanced energy expenditure (2, 23). The current results show that deficiency of PTP1B in POMC neurons plays a role in short-term cold-induced reduction of spontaneous physical activity, and may influence core temperature regulation via enhanced priming of thyroid activity rather than alterations in BAT UCP-induced thermoregulation, which likely contributes to the increased energy expenditure phenotype of POMC-Ptp1b^{−/−} mice.
We wish to thank Ronald C. Stuart for expert technical assistance with the thyroid assays, and Juliana Burns for her assistance with Hemotoxylin-Eosin staining.
GRANTS

This work was supported by: NIH R01 DK082417 (K.K.B.), DK21397 (H.J.G.), DK085916 (E.A.N.), NIH P30 DK019525 (Penn DERC), AHA 10POST3910000 (B.C.D.), The McCabe Fund, and the University of Pennsylvania Research Foundation (URF).
REFERENCES

43. Rogers RC, McDougal DH, and Hermann GE. Leptin amplifies the action of thyrotropin releasing hormone in the solitary nucleus: An in vitro calcium imaging study.

 Brain Res, 2011.

Leptin significantly reduced food intake in POMC-Ptp1b\(^{-/-}\) (KO) mice on the second day of leptin injections, however Ptp1b\(^{+/+}\) (WT) mice showed no change in intake (A). POMC-Ptp1b\(^{-/-}\) mice showed significant BW loss following leptin treatment, while control mice did not (B). Leptin enhanced T\(_C\) in the light phase on Day 1 of treatment equally between genotypes (C). No effect on SPA was noted (D).

*- P<0.05, baseline vs. leptin treatment, within genotype.

Exposure to cold (4\(^\circ\)C) significantly increased food intake in both POMC-Ptp1b\(^{-/-}\) (KO) and Ptp1b\(^{+/+}\) (WT) mice to a similar magnitude across all 4 days (A). All mice reduced T\(_C\) to a significant degree over the 4-day duration of cold exposure (B). SPA was significantly decreased by cold exposure in both POMC-Ptp1b\(^{-/-}\) and Ptp1b\(^{+/+}\) mice during the dark phase. POMC-Ptp1b\(^{-/-}\) mice exhibited significant inhibition of activity beginning on the first day of exposure, and also subsequently on days 3 and 4, while in Ptp1b\(^{+/+}\) mice, decreased activity was only evident on days 3 and 4 (C). *- P<0.05, Non-exposed vs. Cold-exposed, within genotype.

BW between age-matched controls of non-cold exposed POMC-Ptp1b\(^{-/-}\) (KO) and Ptp1b\(^{+/+}\) (WT) mice at room temperature were no different than cold-exposed mice, regardless of genotype (A). Four-day cold exposure significantly reduced WAT weight.
of both POMC-Ptp1b−/− and Ptp1b+/+ mice (B). BAT weight in cold-exposed POMC-
Ptp1b−/− mice was significantly greater than in non-exposed POMC-Ptp1b−/− mice, while
no such difference was observed in Ptp1b+/+ mice (C). Hematoxylin and Eosin staining of
BAT, and cold-exposed BAT cell parameters show hypertrophy of BAT cells in POMC-
Ptp1b−/− mice (D). *- P<0.05, Non-exposed vs. Cold-exposed, within genotype. †-
P<0.05, POMC-Ptp1b−/− vs. Ptp1b+/+ mice.

FIGURE 4

UCP-1, UCP-2, UCP-3 and Cox-2 mRNA in BAT from cold exposed tissue exhibited
enhanced expression compared to non-exposed BAT in both POMC-Ptp1b−/− (KO) and
Ptp1b+/+ (WT) mice. UCP-2 levels are elevated in POMC-Ptp1b−/− mice compared to
Ptp1b+/+ controls. *- P<0.05, Non-exposed vs. Cold-exposed, within genotype, †- P<0.05,
#-P=0.06 POMC-Ptp1b−/− vs. Ptp1b+/+ mice.

FIGURE 5

Plasma levels of T3 were elevated in cold-exposed POMC-Ptp1b−/− (KO) mice relative
POMC-Ptp1b−/− mice at room temperature, as well as to cold-exposed Ptp1b+/+ (WT)
controls (A). Plasma levels of T4 were similar between all conditions and genotypes (B).
Correspondingly, a trend toward increased BAT D2 activity was detected in cold-exposed
POMC-Ptp1b−/− mice relative to Ptp1b+/+ mice (P=0.06) (C). *- P<0.05, Non-exposed vs.
Cold-exposed, within genotype. †- P<0.05, #=P=0.06, POMC-Ptp1b−/− vs. Ptp1b+/+ mice.

SUPPLEMENTAL FIGURE
Spontaneous Activity (SPA) during the first 24 hrs of cold exposure. POMC-\text{Ptpt1b}^{+-}\text{ mice (n=6)} reduce activity during initial periods of the dark phase relative to \text{Ptpt1b}^{++}\text{ mice (n=6). Error bars are omitted for clarity.}
Figure 2

A

Food Intake (g)

Cold Exposure (Day)

WT
KO

B

Core Temperature (°C)

Light
Dark

C

Spontaneous Activity (counts)

Light
Dark

* ****
Figure 3

A. Body weight (g)

B. WAT weight (g)

C. BAT weight (g)

D. Room-Temperature BAT cell Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WT</th>
<th>KO</th>
<th>WT</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (µm²)</td>
<td>297.5 ± 4.9</td>
<td>287.9 ± 5.4</td>
<td>296.6 ± 3.8</td>
<td>319.1 ± 3.7†</td>
</tr>
<tr>
<td>Diameter (µm)</td>
<td>19.3 ± 0.2</td>
<td>19.0 ± 0.1</td>
<td>19.3 ± 0.1</td>
<td>20.0 ± 0.1†</td>
</tr>
<tr>
<td>Perimeter (µm)</td>
<td>75.7 ± 0.7</td>
<td>74.3 ± 0.8</td>
<td>74.8 ± 0.5</td>
<td>78.1 ± 0.5†</td>
</tr>
</tbody>
</table>
Figure 4

The diagram illustrates the mRNA expression levels of various genes under different conditions. The y-axis represents mRNA Expression (AU), ranging from 0 to 5. The x-axis categorizes samples by genotype (WT, KO) and exposure condition (Non-exposed, Cold Exposed).

- **UCP-1**: Non-exposed WT shows low expression compared to KO. Cold Exposed WT and KO show a slight increase in expression.
- **UCP-2**: Non-exposed WT and KO have similar expression levels. Cold Exposed KO shows a significant increase compared to non-exposed KO.
- **UCP-3**: Non-exposed WT shows a moderate expression, while KO shows a very high expression. Cold Exposed KO shows a significant increase.
- **COX-2**: Non-exposed WT and KO have similar expression levels. Cold Exposed KO shows a slight increase compared to non-exposed KO.
Figure 5

A) Serum T3 (ng/dl) levels in WT and KO mice under non-exposed and cold-exposed conditions.
B) Serum T4 (μg/dl) levels in WT and KO mice under non-exposed and cold-exposed conditions.
C) BAT D2 (Counts/min/mg) in WT and KO mice under cold-exposed conditions.

D) mRNA expression of pro-TRH in WT and KO mice under non-exposed and cold-exposed conditions.
E) mRNA expression of GHS-R in WT and KO mice under non-exposed and cold-exposed conditions.