Endurance training in obese humans improves glucose tolerance, mitochondrial fatty acid oxidation and alters muscle lipid content

Clinton R. Bruce¹, A. Brianne Thrush¹, Valerie A. Mertz¹, Veronic Bezaire¹, Adrian Chabowski², George J.F. Heigenhauser³ and David J. Dyck¹

¹ Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1; ² Department of Physiology, Medical University of Bialystok, Bialystok, Poland 15-089; ³ Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.

Running title: Training and muscle lipid metabolism in obesity

Corresponding author: Clinton R. Bruce, PhD
Diabetes and Obesity Program
Garvan Institute of Medical Research
384 Victoria St
Darlinghurst
NSW 2010
AUSTRALIA
Ph: +61 2 9295 8217
Fax: +61 2 9295 8201
Email: c.bruc@garvan.org.au
Abstract

Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase-1 (CPT-1) and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 weeks of moderate-intensity endurance training and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance with a reduction in the area under the curve for glucose (P<0.05) and insulin (P=0.01) during an oral glucose tolerance test. CPT-1 activity increased 250% (P=0.001) with training and became less sensitive to inhibition by malonyl CoA. This was associated with an increase in mitochondrial FA oxidation (+120%; P<0.001). Training had no effect on muscle triacylglycerol content. However, there was a trend for training to reduce both the total diacylglycerol (DAG) content (-15%, P=0.06) and the saturated DAG-FA species (-27%, P=0.06). Training reduced both total ceramide content (-42%; P=0.01) and the saturated ceramide species (-32%; P<0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation not only leads to a reduction in muscle lipid content but also a change in the saturation status of lipids which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.

Key words: Triacylglycerol, diacylglycerol, ceramide, insulin resistance.
The mechanisms linking obesity to the development of insulin resistance are not fully understood. However, it is becoming increasingly apparent that defects in skeletal muscle fatty acid (FA) metabolism are involved. In particular, a reduced capacity for FA oxidation (22,23) and accretion of lipids in skeletal muscle seems to play a crucial role in the etiology of insulin resistance (1,20,36). Although the increase in muscle lipid content is manifested as an increase in triacylglycerol (TAG; 29), it is likely that elevated TAG stores may only be a marker of dysfunctional muscle FA metabolism, and that accumulations of more reactive lipids, such as diacylglycerol (DAG) or ceramides, are actually responsible for the insulin resistance. Indeed, there are now plausible mechanistic links between the development of insulin resistance and accumulation of DAG and ceramide in muscle (7). Intramyocellular DAG levels are elevated in a number of models of insulin resistance (20,32), while ceramide content is increased in muscle from obese insulin resistant humans (1). DAG can activate several isoforms of protein kinase C (PKC) which can impair insulin signal transduction to glucose transport via serine phosphorylation of insulin receptor substrate (IRS)-1 (39). In addition, ceramides can cause insulin resistance by preventing insulin-stimulated Akt serine phosphorylation and activation (33,37).

In addition to lipid accumulation, the obese/insulin resistant phenotype is characterized by an impaired capacity for FA oxidation which is associated with a reduction in the activity of muscle carnitine palmitoyltransferase-1 (CPT-1), the rate limiting step in the mitochondrial oxidation of FA’s (23). Thus, it is likely that an impaired ability to
transport and oxidize FA’s in skeletal muscle mitochondria of these individuals exacerbates lipid accumulation.

Therefore, it has been proposed that interventions which increase FA oxidation may exert an insulin sensitizing effect on skeletal muscle, in part, by reducing the accumulation of cytosolic lipids (30). Endurance training, for example, enhances fat oxidation (16,21,31) and improves insulin sensitivity (8). Thus, it is of interest to determine whether the improvement in muscle FA oxidation following endurance training in obese individuals is associated with a reduction in specific intramyocellular lipid pools that have a direct link with the development of insulin resistance, such as DAG and ceramide. However, there is a paucity of data examining the effects of exercise training on skeletal muscle DAG and ceramide content. Recently, it was shown that training reduced skeletal muscle ceramide content in rats (10) while a cross-sectional study in humans was unable to demonstrate any differences in ceramide content in muscle from untrained and trained individuals (15). We are unaware of any study that has examined the effect of exercise on muscle DAG content.

Therefore, in the present study we examined the effect of an endurance training program on rates of mitochondrial FA oxidation, as well as the activity of CPT-1 in skeletal muscle of obese individuals. Furthermore, we also determined the effect of training on skeletal muscle TAG, DAG and ceramide content. We hypothesized that the training-induced increase in CPT-1 activity would enhance rates of mitochondrial FA oxidation.
leading to a reduction in muscle lipid content, and would be associated with an improvement in glucose tolerance.

Research design and methods

Subjects

Nine obese (BMI >30 kg/m²) volunteers (4 male and 5 female) were studied. The physical characteristics of all participants are presented in Table 1. For inclusion, volunteers were required to have maintained a stable weight (±2 kg) for at least 6 months prior to the study. None of the volunteers had type 2 diabetes, nor were they participating in any regular form of exercise before the study. The experimental protocol was approved by the University of Guelph ethics committee. The purpose, nature and potential risks of the study were explained to all subjects and informed written consent was obtained prior to participation.

Determination of peak oxygen uptake (VO₂peak)

All subjects performed a progressive, incremental cycling test to volitional fatigue on an electronically-braked ergometer (Lode, Groningen, The Netherlands) for determination of VO₂peak prior to, at the midpoint, and at the completion of the training program (described below).

Oral glucose tolerance test

One week before, and 36-48 h following completion of the training program, an oral glucose tolerance test (OGTT) was performed. Subjects reported to the laboratory
following a 10-12 h overnight fast. An antecubital vein was cannulated for blood sampling. After a baseline blood sample (5 mL), subjects ingested a 75 g glucose load (TRUTOL®, Source Medical, Mississauga, ON, Canada) and blood (5 mL) was sampled every 20 min for the next 3 h. Area under the curve for insulin and glucose responses during the OGTT were calculated.

Skeletal muscle biopsy

One week prior to training, and 36-48 h after completion of the training program, three biopsies of the v. lateralis muscle were obtained. Briefly, local anesthesia (1% lidocaine) was administered to the skin, subcutaneous tissue and fascia of the v. lateralis and an incision was made. Three separate sites on the same leg were prepared. Resting muscle biopsies were obtained using a Bergström needle. Muscle biopsy specimens (~200 mg) from the first two biopsies were cleaned of any visible non-muscle tissue and immediately placed in ice-cold medium I for isolation of mitochondria (described subsequently). Muscle obtained from the final biopsy (~100-150 mg) was immediately frozen and stored in liquid nitrogen until subsequent analysis.

Exercise training program

The exercise-training program consisted of 8 wk of ergometer cycling undertaken 5 d/wk under supervision in the laboratory. Subjects cycled for 60 min at 65-70% of pre-training VO$_2$ peak. The training intensity was verified by measuring VO$_2$ during the training session in the first week. After 4 wk of exercise training, VO$_2$ peak was reassessed and the training program adjusted, so that for the remaining 4 wk subjects cycled for 60 min at
70% of their new VO2 peak. At the completion of the 8 wk training program, subjects performed a third and final VO2 peak test. During every training session, heart rate was monitored. Subjects were allowed free access to water during the training sessions. Whole body rates of substrate metabolism were determined from indirect calorimetry during a 20 min ride at 65% of pre-training VO2peak during the first and last week of the program.

Diets

Subjects were required to complete a detailed 3-day food record prior to the pre-training OGTT and muscle biopsy procedures. For the post-training testing, subjects were instructed to replicate these diets. The macronutrient composition of the diets was 45% carbohydrate, 38% fat and 17% protein. Subjects were instructed not to make any dietary changes during the study which was confirmed by analysis of food records obtained after 4 and 8 weeks of training. Body weight was stable during the study; thus the effects of training independent of weight loss were studied.

Blood biochemistry

Each blood sample was collected in a sodium-heparinized tube and immediately processed; 200 µL of blood was transferred into 1 mL of 0.6 N perchloric acid (PCA) and centrifuged for 2 min. The supernatant was then removed and stored at -80°C until the subsequent analyses of whole blood glucose which was determined in duplicate fluorometrically. The remaining blood was centrifuged for plasma collection and stored at -80°C for subsequent analysis. Plasma insulin and adiponectin concentrations were
determined by radioimmunoassay using commercially available kits (Linco Research Inc., St. Charles, MO). Plasma FA concentration was measured using an enzymatic colorimetric method (NEFA C test kit, Wako, Richmond, VA).

Isolation of mitochondria from skeletal muscle

To obtain a pure and intact mitochondrial fraction, differential centrifugation was used (6). All procedures were performed at 0-4°C. Media used were as follows: Medium I: 100 mM KCl, 5mM MgSO₄·7H₂O, 5 mM EDTA, and 50 mM Tris HCl, pH 7.4; Medium II: solution I and 1mM ATP, pH 7.4; Medium III: 220 mM sucrose, 70 mM mannitol, 10 mM Tris HCl and 1 mM EDTA, pH 7.4. Muscle was immediately placed in ice-cold medium I and then blotted and weighed. Muscle was minced with scissors in 1 mL of medium II and transferred to an ice-cold glass Potter-Elvehjem homogenizer (Tri-R Stir-R model S63C; Fisher, Toronto, ON). Tissue was homogenized in 20 volumes of medium II with a tight fitting Teflon pestle (10 up and down strokes, 30% of maximal speed). The homogenate was spun at 800 g for 10 min at 4°C. Subsarcolemmal (SS) mitochondria remained in the supernatant, which was removed and kept on ice. The intermyofibrillar (IMF) mitochondria were pulled down in the pellet which was resuspended in 5 volumes of medium II and treated with a protease (Sigma P5380, 0.025 mL/g) for 5 min to digest the myofibrils. Addition of 15 mL of ice-cold medium II was used to diminish the action of the protease. Samples were spun at 5,000 g for 5 min and the supernatant was removed. The pellet was resuspended in 10 volumes of medium II and spun at 800 g for 10 min. The IMF mitochondria found in the supernatant were combined with the SS supernatant from the first 800 g spin to increase the mitochondrial yield, and was spun at 10,000 g for 10 min. The pellet was washed twice in
medium II and spun at 10,000 g for 10 min at 4°C. The pellet was resuspended in 1 µL of medium III per mg of tissue and used for CPT-1 activity measurements. The remaining mitochondria were further diluted for FA oxidation measurements.

Carnitine palmitoyltransferase-1 (CPT-1; EC 2.3.1.21) activity

The forward radioisotope assay for the determination of CPT-1 activity was used as described by McGarry et al. (27) with minor modifications (2). Briefly, the assay was conducted at 37°C and was initiated by the addition of 10 µL of mitochondrial suspension (1:3 dilution) to 90 µL of the following standard reaction medium: 117 mM Tris-HCl (pH 7.4), 0.28 mM reduced glutathione, 4.4 mM ATP, 4.4 mM MgCl₂, 16.7 mM KCl, 2.2 mM KCN, 40 mg/L rotenone, 0.5% BSA, 300 µM palmitoyl-CoA, and 5 mM L-carnitine with 1 µCi of L-[³H]carnitine and a final pH of 7.1. The sensitivity of CPT-1 to malonyl CoA (M-CoA) was also determined with the addition of M-CoA in concentrations of 0.2, 0.7 and 2.0 µM. The reaction was stopped after 6 min with the addition of ice-cold 1N HCl. Palmitoyl-[³H]carnitine was extracted in water-saturated butanol in a process involving three washes with distilled water and subsequent re-centrifugation steps to separate the butanol phase, in which the radioactivity was counted.

CPT-1 activity was expressed in terms of the whole muscle (nmol·min⁻¹·kg wet muscle⁻¹), and was normalized to the ratio of citrate synthase activity in intact mitochondrial suspensions to total muscle citrate synthase activity to account for the quality of the mitochondrial preparation (see below).
Skeletal muscle mitochondrial fatty acid oxidation

Muscle FA oxidation rate was determined in intact isolated mitochondria from the sum of 14CO$_2$ production and 14C-labeled acid-soluble metabolites following a 30 min incubation in a sealed system. A volume of 900 µL of pre-gassed (37°C for 15 min - 5% CO$_2$:95% O$_2$ and constantly shaking) modified Krebs Ringer buffer (MKR: 115 mM NaCl, 2.6 mM KCl, 1.2 mM KH$_2$PO$_4$, 10 mM NaHCO$_3$, 10 mM HEPES; pH 7.4) supplemented with 5 mM ATP, 1 mM NAD$^+$, 0.5 mM DL-carnitine, 0.1 mM coenzyme A, 25 µM cytochrome C, and 0.5 mM malate was added to a 20 mL vial. The 20 mL glass scintillation vial contained a microcentrifuge tube with 300 µL of 1 M benzethonium hydroxide inserted in a 1.5 mL centrifuge tube to capture 14CO$_2$ produced during the oxidation reaction. Viable mitochondria (100 µL) were added to the system, which was then sealed with a rubber cap and secured with parafilm. The reaction was initiated by the addition of a 6:1 palmitate:BSA complex (containing 10 µCi of 14[1-C] palmitate) administered by syringe through the rubber cap. The reaction ran for 30 min at 37°C and was terminated with the addition of ice cold 12 N PCA.

A fraction of the reaction medium was removed through the cap and analyzed for isotopic fixation. Briefly, 500 µL of reaction medium was transferred to a 14 mL centrifuge tube and combined with 3 mL of 2:1 chloroform:methanol mixture (vol:vol), shaken for 15 min before the addition of 1.2 mL of 2 M KCl:HCl. Samples were shaken again and spun at 5000 g for 15 min. A 1 mL aliquot of the aqueous phase was removed and quantified by liquid scintillation.
Gaseous CO$_2$ produced from oxidation of 14[1-C] palmitate was measured by acidifying the remaining reaction mixture in the 20 mL glass scintillation vial with 1 mL of 1M H$_2$SO$_4$. Liberated 14CO$_2$ was trapped by benzethonium hydroxide over a 90 min incubation period at room temperature. The microcentrifuge tube containing the 14CO$_2$ was put in a scintillation vial and radioactivity was counted.

Oxidative enzymes

Citrate synthase activity was determined in isolated mitochondria as well as in aliquots of homogenized whole muscle according to Srere et al. (34). Citrate synthase activity in intact mitochondria was determined by first assaying the extramitochondrial fraction in the suspension (1:20 dilution) and then assaying the total citrate synthase activity of the suspension (1:20 dilution) after lysing the mitochondria with 0.04% Triton X-100 and repeated freeze-thawing. The net difference provides a measure of activity in the intramitochondrial fraction. β-HAD activity was assayed spectrophotometrically at 37°C by measuring the disappearance of NADH using the whole muscle homogenate as for citrate synthase (25).

Skeletal muscle lipids

Muscle samples (~100mg) were freeze dried and cleaned of any visible non-muscle tissue including adipose tissue. Lipids were extracted in chloroform-methanol (2:1 vol/vol) according to the method of Folch et al. (11) with addition of butylated hydroxytoluene (0.01%; Sigma-Aldrich, St. Louis, MO) as an antioxidant. Muscle lipids were separated by thin-layer chromatography on silica gel plates (0.22 mm Kieselgel 60; Merck,
Darmstadt, Germany). To isolate TAG and DAG, the total lipid extract was separated using heptane: isopropyl ether: acetic acid (60:40:3, vol/vol/vol). Ceramide content was assayed as described previously (9). Briefly, samples were developed to one-third of the total length of the plate in chloroform: methanol: 25% NH₃ (20:5:0.2, vol/vol/vol), dried and rechromatographed in heptane: isopropyl ether: acetic acid (60:40:3, vol/vol/vol). Plates for were then dried, sprayed with dichlorofluorescein dye (0.2% wt/vol in methanol), and visualized under long-wave ultraviolet light. Standards for TAG, DAG and ceramide were run along with the samples to facilitate the identification of lipid bands. The individual lipid bands were marked on the plate and scraped into vials. After the lipid separation, FA’s, together with methylpentadecanoic acid (Sigma) used as an internal standard, were transmethylated in the presence of 1 mL of 14% boron fluoride in methanol at 100°C for 90 min (28). The samples were cooled to room temperature, and 1 mL of pentane and 0.5 mL of water were added. After centrifugation, the upper pentane phase was dried under nitrogen. The methyl esters were dissolved in 40 μL of hexane and analyzed by gas-liquid chromatography. A Hewlett-Packard 5890 Series II and a fused HP-INNOWax (50 m x 0.53 mm) capillary column were used. Injector and detector temperatures were set at 250°C each. The oven temperature was increased linearly from 160 to 230°C at a rate of 5°C/min. Individual FA methyl esters were quantified using the area corresponding to the internal standards (Sigma). Total TAG, DAG and ceramide content was estimated as the sum of the particular FA content of the assessed fraction and was expressed in nanomoles per gram of tissue.

Western blot analysis
Muscle tissue (~20 mg) was homogenized (Polytron; Brinkman Instruments, Westbury, NY, USA) in ice-cold buffer containing 50 mM HEPES, 150 mM NaCl, 10 mM NaF, 1 mM Na₃VO₄, 5 mM EDTA, 0.5% Triton X-100, 10% glycerol (v:v), 2 mg/mL leupeptin, 100 mg/mL phenylmethylsulfonyl fluoride, and 2 mg/mL aprotinin. Homogenates were spun at 16,000 g for 60 min at 4°C and the supernatant was removed and protein content determined. Muscle lysates were solubilized in Laemmli buffer and boiled for 5 min, resolved by SDS-PAGE on 5-10% polyacrylamide gels, transferred to a nitrocellulose membrane and blocked with either 5% non-fat milk powder or 7% BSA. Membranes were immunoblotted overnight with antibodies specific for Thr172-phosphorylated AMP activated protein kinase α (AMPKα 1:1000; Cell Signaling Technology, Beverly, MA); total AMPK (1:1000; Upstate Cell Signaling Solutions, Waltham, MA), Ser79-phosphorylated acetyl CoA carboxylase (ACC) which most likely recognizes the equivalent Ser²²¹ in human ACCβ in the phosphorylated state (1:1000; Cell Signaling Technology), total ACC (1:1000; Cell Singaling Technology); peroxisome proliferator-activated receptor (PPAR) α (1:1000; Chemicon, Temecula, CA) and PPARδ (1:800; Santa Cruz Biotechnology, Santa Cruz, CA). After incubation with horseradish peroxidase-conjugated secondary antibody (1:1000; Cell Signaling Technology), the immunoreactive proteins were detected with enhanced chemiluminescence and quantified by densitometry.

Statistics and calculations

The insulin sensitivity index was calculated from the following formula (10,000/square root of [fasting glucose X fasting insulin] X [mean glucose X mean insulin during OGTT]) from Matsuda and Defronzo (26). All data are reported as mean ± SEM.
Differences between pre- and post-training were analyzed with paired \(t \)-tests. The sensitivity of CPT-1 to M-CoA was examined using a two-way ANOVA. Associations between variables were investigated using Pearson correlation analysis. Statistical significance was accepted at \(P<0.05 \).

Results

Subject characteristics

Subject characteristics are presented in Table 1. Body mass and BMI did not change following training. VO\(_2\) peak increased by 26\% (\(P<0.001 \)). No change was observed in fasting FA levels. Circulating adiponectin levels were significantly decreased with training (\(P<0.01 \)).

Glucose tolerance

Exercise training had no effect on fasting blood glucose concentration, but reduced fasting plasma insulin (\(P<0.005 \); Table 1). Blood glucose and plasma insulin concentrations during the OGTT are shown in Figure 1A & B. The area under the curve for both glucose (\(P<0.05 \), Figure 1C) and insulin (\(P=0.01 \), Figure 1D) during the OGTT was reduced with training. The insulin sensitivity index improved by 34\% with training (\(P=0.001 \), Figure 1E).

CPT-1 activity and oxidative enzymes

Maximal CPT-1 activity increased by \(\sim 250\% \) with training (\(P=0.001 \); Figure 2A). Following training, CPT-1 was less sensitive to inhibition by M-CoA (main effect
P<0.05; Figure 2B). The mitochondrial yield was 29±3%, while the quality was 89±1% and was not different pre- vs. post-training. There was an increase in the activity of citrate synthase (68%, P<0.001; Table 2) and β-HAD (36%, P<0.001; Table 2) with training.

Mitochondrial FA oxidation

The rate of mitochondrial FA oxidation increased by 120% following training (P<0.001; Figure 3). The change in mitochondrial FA oxidation did not significantly correlate with any changes in glucose tolerance. The exercise training program increased whole body fat oxidation during a 20 min standardized ride at 65% of pre-training VO2peak as shown by the reduction in RER (0.96±0.03 vs. 0.91±0.02 for pre- and post-training respectively; P<0.001).

Skeletal muscle lipids

Training did not alter the FA composition or the content of skeletal muscle TAG (Table 3). Training resulted in a ~15% reduction in total DAG content in muscle (P=0.06; Table 4). There was a significant decrease in the C16:0 DAG species following training (P<0.05; Table 4). There were also reductions in C18:0 (-44%; P=0.07), C18:1 (-14%; P=0.07), and the sum of the saturated DAG FA’s with training (-27%, P=0.06).

Interestingly, there were correlations between the change in the area under the curve for plasma insulin during the OGTT and the change in C16:0 DAG (r^2 = 0.50, P<0.05), C18:0 DAG (r^2 = 0.80, P<0.05) and total saturated DAG FA’s (r^2 = 0.46, P<0.05). Training resulted in a 42% decrease in total ceramide content in muscle (P=0.01; Table
The decrease was mostly attributable to changes in C16:0 (-40%; P<0.05), C16:1 (-46%; P=0.001), C18:1 (-52%; P=0.001), C18:2 (-58%, P<0.05) and C20:0 ceramide (-40%, P<0.05). There was also a tendency for C18:0 ceramide to decrease with training (-52%, P=0.06). Training resulted in a reduction in the total saturated (-32%, P<0.05) and monounsaturated ceramide FA’s (-40%, P<0.01). The changes in ceramide content were not associated with any changes in glucose tolerance.

Skeletal muscle signaling

Training did not affect total protein expression, or the phosphorylation state of AMPK (Figure 4A & B). Furthermore, the protein content and phosphorylation of ACC, a target of AMPK, was unaltered by training (Figure 4C & D). PPARα (Figure 4E) and PPARδ (Figure 4F) were not changed with training.

Discussion

It has been proposed that interventions that lead to an increased capacity for skeletal muscle FA oxidation, such as endurance training, may improve insulin action through a reduction in intramyocellular lipids. However, very little is known regarding the effect of endurance training on skeletal muscle lipids, in particular DAG and ceramide content. Therefore, in the present study we examined whether the anticipated improvement in the capacity for muscle to oxidize FA following training would be associated with a reduction in intramuscular DAG and ceramide content in obese individuals. Here we report that endurance training increases CPT-1 maximal activity and reduces its sensitivity to inhibition by M-CoA, leading to increased rates of mitochondrial FA
oxidation. This was associated with a reduction in the total content of ceramide and altered composition of ceramide-FA’s in muscle. Furthermore, there was a trend for a reduction in total DAG content in muscle, as well as certain saturated DAG-FA species. Importantly, these changes in intramuscular lipids were correlated to the observed improvement in glucose tolerance.

Effect of training on CPT-1 activity and mitochondrial FA oxidation

Carnitine palmitoyltransferase-1 is considered the rate limiting step in the oxidation of FA’s. Carnitine palmitoyltransferase-1 activity is reduced in skeletal muscle from obese individuals and is likely to contribute to the suppressed rates of FA oxidation in obesity (23). Thus, obese muscle appears to be prone to partitioning FA’s toward storage. Although studies have shown that CPT-1 activity is increased in muscle of trained individuals (21,35), no studies have examined the effect of endurance training on CPT-1 activity in muscle of obese individuals. Furthermore, few studies have directly linked changes in CPT-1 activity with an alteration in mitochondrial FA oxidation. In the present study, CPT-1 activity was increased with training and this was associated with enhanced rates of mitochondrial FA oxidation. It is possible that the increase in both CPT-1 activity and mitochondrial FA oxidation could be solely due to an increase in mitochondrial density which occurs with training. To account for this possibility, we measured citrate synthase activity which is in direct proportion to muscle mitochondrial content (12). Training resulted in a 68% increase in citrate synthase activity whereas CPT-1 activity increased by ~250% and mitochondrial FA oxidation increased 120% with training. Thus, an increase in mitochondrial density cannot entirely account for the
improved fat oxidation. It is difficult to reconcile the mismatch in the relative increase in CPT-1 activity and mitochondrial FA oxidation, as it would be expected that changes in CPT-1 activity would be closely mirrored by changes in mitochondrial FA oxidation. It should be noted that the post-training CPT-1 activities reported here are similar to those reported in young healthy untrained individuals (35), and that the large increase in CPT-1 with training could be a function of the very low pre-training levels in our subjects. Nevertheless, these adaptations to training appear to reflect both an increase in mitochondrial density and a change in mitochondrial function.

We also measured the effect of training on several regulators of skeletal muscle FA metabolism. Training did not influence the protein content or phosphorylation state of AMPK and its target, ACC, nor did it affect the protein content of PPARα and δ. The lack of change in PPARα protein expression is in contrast to a previous report by Horowitz et al. (17) who showed a doubling of PPARα protein following 12 weeks of training. The difference in studies could be due to differences in subject characteristics. Horowitz et al. (17) used female subjects who were leaner and younger and also trained for a longer period of time than the subjects in the current study. Surprisingly, we did find a reduction in circulating adiponectin levels. Other studies examining the effect of endurance training on circulating levels of adiponectin have reported no change (19) or an increase (24) which is in contrast to our findings. Adiponectin increases skeletal muscle FA oxidation by stimulating AMPK leading to inhibition of ACC and a reduction in M-CoA content (5,38). Thus, it seems paradoxical that endurance training which increases FA oxidation would lead to a reduction in adiponectin levels.
The effect of training on the sensitivity of CPT-1 to M-CoA

Carnitine palmitoyltransferase-1 is reversibly inhibited by M-CoA thereby reducing FA oxidation (27,35). The increase in CPT-1 activity and the concomitant increase in mitochondrial FA oxidation observed with exercise training could be mediated by either a change in M-CoA levels or a change in the sensitivity of CPT-1 to inhibition by M-CoA. Due to limited sample size we were unable to determine M-CoA concentration. However, we were able to demonstrate that with training CPT-1 became less sensitive to inhibition by M-CoA. This may be a potential mechanism to explain the increase in CPT-1 activity and subsequent enhancement of mitochondrial FA oxidation with training. However, this finding differs from a previous report that found an increased sensitivity of CPT-1 to M-CoA in trained individuals (35). This seems paradoxical considering that endurance trained individuals have a greater capacity to oxidize FA (21). These differences between studies could be related to differences in the subject populations. The subjects in the current study were vastly different from Starritt et al (35) in that they were obese, less fit and had lower levels of CPT-1 activity pre-training. Nonetheless, the results of the present study offer new insight into the regulation of CPT-1 activity by M-CoA and subsequent mitochondrial FA oxidation in skeletal muscle following training.

Effect of training on skeletal muscle lipids

The major finding of the present study was that total ceramide content of skeletal muscle decreased in conjunction with enhanced glucose tolerance and insulin sensitivity in obese individuals following a short-term training program. These findings differ from those of Helge et al. (15) who reported no difference in the ceramide content of muscle from
trained and untrained individuals. However, similar observations to the present study have been reported in rat skeletal muscle where training reduced total ceramide content (10). This finding is of particular importance in determining the mechanisms by which endurance training enhances insulin action, especially given that ceramide levels are negatively associated with insulin sensitivity (36) and are elevated in skeletal muscle from obese insulin resistant humans (1). Furthermore, ceramide has been shown to play a mechanistic role in the development of skeletal muscle insulin resistance. In C2C12 muscle cells, ceramide induces insulin resistance and inhibits insulin-stimulated Akt serine phosphorylation and activation (33). Therefore, these findings suggest that a reduction in muscle ceramide content would, at least in part, contribute to enhanced insulin action with training.

The accumulation of DAG in skeletal muscle has also been shown to be associated with the development of insulin resistance in rodents (39) and humans (1). DAG is a potent activator of a number of protein kinase C isoforms which can impair insulin-stimulated glucose uptake through inhibition of insulin receptor signaling at the level of IRS-1 (39). To our knowledge, this is the first study to investigate the effect of endurance training on muscle DAG content in humans. Thus, we hypothesized that the increased capacity for FA oxidation following training would be associated with a reduction in skeletal muscle DAG content. Despite being unable to detect any significant change in the total DAG content with training, there was a strong trend for training to reduce DAG levels.
Apart from the content of lipid in the muscle, the composition of the lipids may also affect insulin action (14). Indeed, in addition to the reduction in total ceramide content we also found that training altered the composition of individual ceramide-FA species in skeletal muscle. Following training there was reduction in the C16:0, C16:1, C18:1, C18:2, C20:0, while there was a trend for the C18:0 species to also decrease with training. This is consistent with the findings of Dobrzyń (10) who also reported changes in the composition of ceramide-fatty acids in several muscle types of rats who were exercise trained for 6 weeks. It is of particular interest that there was a decrease in the total saturated ceramide-FA species with training. In addition there was decrease in the C16:0 DAG FA with training while there was also a tendency for the other saturated species of DAG, C18:0 (P=0.07), and the total saturated DAG-FA’s (P=0.06) to decrease with training. Furthermore, there were significant correlations between the change in these saturated species of DAG and the change in the area under the curve for insulin determined during the OGTT. These findings are similar to those of Houmard et al. (18) who reported that the saturated species of long chain acyl CoA’s (palmityl CoA and stearate CoA) decreased significantly with weight loss. It has been suggested that saturated FA’s and their derivatives are potent in terms of functioning as intracellular signaling molecules that induce insulin resistance (18). Therefore, the findings of the present study would suggest that exercise training can modify the FA profile of skeletal muscle lipids in favor of enhanced insulin sensitivity.

Interestingly, we found that the reduction in muscle ceramide and DAG content with training was independent of any change in muscle TAG content. It has previously been
shown that well-trained individuals have increased muscle TAG content despite being insulin sensitive (13). Thus, it has been hypothesized that intramyocellular TAG per se does not directly influence insulin action in skeletal muscle (13). However, recent studies have demonstrated that in contrast to Goodpaster et al (13), muscle TAG concentrations are not elevated in endurance trained individuals (3) and that training does not alter muscle TAG levels in healthy individuals (4). Therefore, the effect of exercise training on muscle TAG content is equivocal. Nonetheless, taken together, the results from this study suggest that muscle DAG and ceramide play a more important role in the regulating insulin sensitivity than muscle TAG.

In conclusion, we show that endurance training increases maximal CPT-1 activity leading to enhanced rates of mitochondrial FA oxidation in vitro. This was associated with a reduction in the total content of ceramide and changes in the composition of ceramide-FA’s in skeletal muscle of obese individuals. There was also a tendency for a reduction in total DAG content and the saturated DAG-FA species with training. These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation not only leads to a reduction in muscle lipid content but also a change in the saturation status of lipids which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.
Acknowledgements

We acknowledge the technical assistance of Dr Rebecca Tunstall and Jane Rutherford.

Grants

This study was funded by Natural Sciences and Engineering Research Council of Canada Discovery and Collaborative Health Research grants (D.J. Dyck).
References

Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI:
Mechanism by which fatty acids inhibit insulin activation of insulin receptor
substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J
Biol Chem 277:50230-50236, 2002
Table 1. Subject characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>36 ± 3</td>
<td>-</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.7 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>103 ± 8</td>
<td>102 ± 7</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>36 ± 2</td>
<td>35 ± 2</td>
</tr>
<tr>
<td>VO₂peak (mL/min/kg)</td>
<td>23.5 ± 2.3</td>
<td>29.7 ± 2.1†</td>
</tr>
<tr>
<td>Fasting blood glucose (mM)</td>
<td>4.4 ± 0.2</td>
<td>4.2 ± 0.2</td>
</tr>
<tr>
<td>Fasting plasma insulin (pM)</td>
<td>75.1 ± 10.8</td>
<td>67.0 ± 11.8*</td>
</tr>
<tr>
<td>Fasting plasma FA (mM)</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Fasting plasma adiponectin (µg/mL)</td>
<td>14.0 ± 4.1</td>
<td>9.6 ± 2.9*</td>
</tr>
</tbody>
</table>

Data are mean ± SEM. * Significantly different to pre-training (P<0.01). † Significantly different to pre-training (P<0.001).
Table 2. Citrate synthase and β-hydroxyacyl CoA activity.

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate synthase</td>
<td>23.0 ± 2.3</td>
<td>38.6 ± 3.1*</td>
</tr>
<tr>
<td>β-HAD</td>
<td>12.7 ± 1.4</td>
<td>17.2 ± 1.7*</td>
</tr>
</tbody>
</table>

Data are mean ± SEM. Data is expressed as µmol/min/g wet wt. * Significantly different to pre-training (P<0.001).
Table 3. The effect of exercise training on skeletal muscle triacylglycerol content.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Pre-training</th>
<th>Post-training</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>0.42 ± 0.11</td>
<td>0.33 ± 0.45</td>
</tr>
<tr>
<td>16:0</td>
<td>4.13 ± 1.17</td>
<td>3.37 ± 4.82</td>
</tr>
<tr>
<td>16:1</td>
<td>0.73 ± 0.14</td>
<td>1.04 ± 0.37</td>
</tr>
<tr>
<td>18:0</td>
<td>0.79 ± 0.30</td>
<td>0.62 ± 0.23</td>
</tr>
<tr>
<td>18:1</td>
<td>6.53 ± 1.18</td>
<td>5.86 ± 0.81</td>
</tr>
<tr>
<td>18:2</td>
<td>1.57 ± 0.20</td>
<td>1.99 ± 2.71</td>
</tr>
<tr>
<td>18:3</td>
<td>0.12 ± 0.02</td>
<td>0.26 ± 0.11</td>
</tr>
<tr>
<td>20:0</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>20:4</td>
<td>0.05 ± 0.01</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>20:5</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>22:0</td>
<td>0.02 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>22:6</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>24:1</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.40 ± 2.55</td>
<td>13.59 ± 1.52</td>
</tr>
</tbody>
</table>

Data are means ± SEM. Data is expressed as µmol/g dry wt.
Table 4. The effect of exercise training on skeletal muscle DAG content.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Pre-training</th>
<th>Post-training</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>61.8 ± 10.0</td>
<td>54.8 ± 10.8</td>
</tr>
<tr>
<td>16:0</td>
<td>452.7 ± 75.8</td>
<td>330.2 ± 34.5*</td>
</tr>
<tr>
<td>16:1</td>
<td>70.1 ± 12.5</td>
<td>72.5 ± 17.3</td>
</tr>
<tr>
<td>18:0</td>
<td>75.3 ± 16.9</td>
<td>42.3 ± 7.7</td>
</tr>
<tr>
<td>18:1</td>
<td>487.4 ± 61.6</td>
<td>418.9 ± 50.9</td>
</tr>
<tr>
<td>18:2</td>
<td>119.6 ± 12.2</td>
<td>118.7 ± 12.3</td>
</tr>
<tr>
<td>20:4</td>
<td>48.5 ± 19.8</td>
<td>41.6 ± 4.5</td>
</tr>
<tr>
<td>20:5</td>
<td>9.5 ± 1.9</td>
<td>6.0 ± 0.1</td>
</tr>
<tr>
<td>22:0</td>
<td>5.8 ± 0.9</td>
<td>6.0 ± 1.5</td>
</tr>
<tr>
<td>22:6</td>
<td>165.9 ± 30.5</td>
<td>171.6 ± 42.7</td>
</tr>
<tr>
<td>24:1</td>
<td>20.9 ± 7.3</td>
<td>8.1 ± 2.1</td>
</tr>
<tr>
<td>Total</td>
<td>1517.6 ± 168.1</td>
<td>1270.6 ± 150.6*</td>
</tr>
</tbody>
</table>

Data are means ± SEM. Data is expressed as nmol/g dry wt. * P<0.05 versus pre-training.
§ P=0.06 versus pre-training.
Table 5. The effect of exercise training on skeletal muscle ceramide content.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Pre-training</th>
<th>Post-training</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>75.6 ± 21.4</td>
<td>40.9 ± 10.8</td>
</tr>
<tr>
<td>16:0</td>
<td>162.4 ± 20.0</td>
<td>97.6 ± 7.4*</td>
</tr>
<tr>
<td>16:1</td>
<td>16.9 ± 2.0</td>
<td>9.2 ± 1.4‡</td>
</tr>
<tr>
<td>18:0</td>
<td>117.7 ± 18.4</td>
<td>77.3 ± 2.8§</td>
</tr>
<tr>
<td>18:1</td>
<td>71.2 ± 8.7</td>
<td>34.2 ± 5.3‡</td>
</tr>
<tr>
<td>18:2</td>
<td>70.5 ± 21.8</td>
<td>31.1 ± 11.6*</td>
</tr>
<tr>
<td>18:3</td>
<td>2.8 ± 0.7</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>20:0</td>
<td>8.2 ± 1.4</td>
<td>4.8 ± 0.6*</td>
</tr>
<tr>
<td>20:4</td>
<td>23.8 ± 3.9</td>
<td>19.4 ± 5.2</td>
</tr>
<tr>
<td>20:5</td>
<td>12.6 ± 3.4</td>
<td>13.9 ± 2.2</td>
</tr>
<tr>
<td>22:0</td>
<td>19.6 ± 3.2</td>
<td>22.6 ± 2.8</td>
</tr>
<tr>
<td>22:6</td>
<td>72.1 ± 20.0</td>
<td>61.4 ± 11.6</td>
</tr>
<tr>
<td>24:0</td>
<td>50.3 ± 11.5</td>
<td>51.8 ± 5.2</td>
</tr>
<tr>
<td>24:1</td>
<td>30.3 ± 7.2</td>
<td>27.9 ± 5.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>734.0 ± 98.8</td>
<td>494.2 ± 50.8†</td>
</tr>
</tbody>
</table>

Data are means ± SEM. Data is expressed as nmol/g dry wt. *P<0.05 versus pre-training. †P=0.01 versus pre-training. ‡P=0.001 versus pre-training. §P=0.06 versus pre-training.
Figure 1. Blood glucose and plasma insulin responses during an oral glucose tolerance test performed pre and post-training. A: Blood glucose concentration. B: Plasma insulin concentration. C: Blood glucose area under the curve. D: Plasma insulin area under the curve. E: Calculated insulin sensitivity index. AUC; area under the curve; ISI, insulin sensitivity index. Date are mean ± SEM. * P<0.05 versus pre-training; ** P=0.01 versus pre-training; *** P=0.001 versus pre-training.

Figure 2. Effects of training on skeletal muscle CPT-1 activity. A: Maximal activity of CPT-1 pre and post-training. B: The effect of training on the sensitivity of CPT-1 to inhibition by malonyl CoA. CPT-1; carnitine palmitoyltransefrase 1; M-CoA; malonyl CoA. Data are mean ± SEM. * P=0.001 versus pre-training; † main effect for training, P<0.05; ‡ main effect for malonyl CoA, P<0.01.

Figure 3. The effect of training on rates of mitochondrial fatty acid oxidation. FA; fatty acid. Data are mean ± SEM. * P<0.001 versus pre-training.

Figure 4. The effect of training on the phosphorylation and expression of proteins involved in regulating skeletal muscle FA metabolism. A: Phosporylation of AMPKα. B: Total AMPK expression. C: Phosporylation of ACC. D: Total ACC expression. E: PPARα expression. F: PPARδ expression. Data are mean ± SEM.
Figure 1.
Figure 2.

A

![Graph showing CPT-1 activity (nmol/min/kg) before (Pre) and after (Post) treatment. The bar graph indicates a significant increase in CPT-1 activity post-treatment.](image)

B

![Graph showing % maximal CPT-1 activity at different concentrations of Malonyl CoA (µM). The line graph shows a decrease in % maximal CPT-1 activity with increasing Malonyl CoA concentration.](image)
Figure 3.
Figure 4.

A

B

C

D

E

F

Pre Post Pre Post

P-AMPK (arbitrary units)

Pre Post Pre Post

AMPK (arbitrary units)

Pre Post Pre Post

P-ACC (arbitrary units)

Pre Post Pre Post

ACC (arbitrary units)

Pre Post Pre Post

p-AMPK (arbitrary units)

Pre Post Pre Post

PPAR (arbitrary units)

Pre Post Pre Post

PPAR (arbitrary units)