Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes

Ana Burgeiro,1 Amelia Fuhrmann,1 Sam Cherian,2 Daniel Espinoza,1 Ivana Jarak,1 Rui A. Carvalho,1,3 Marisa Loureiro,4 Miguel Patrício,4 Manuel Antunes,5 and Eugénia Carvalho1,6,7,8

1Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; 2Faculty of Integrative Sciences and Technology, Quest International University Perak, Perak, Malaysia; 3Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; 4Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; 5Cardiothoracic Surgery Unit at the University Hospital of Coimbra, Coimbra, Portugal; 6Portuguese Diabetes Association, Lisbon, Portugal; 7Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and 8Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas

Submitted 24 August 2015; accepted in final form 20 January 2016

Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 310: E550–E564, 2016. First published January 26, 2016; doi:10.1152/ajpendo.00384.2015.—Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardio-protective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated 14C glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P = 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P < 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these adipocytes was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.

epicardial adipose tissue; heart failure; diabetes; glucose uptake; lipolysis

Address for reprint requests and other correspondence: E. Carvalho, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1 andar, 3004-504 Coimbra, Portugal (e-mail: ecarvalh@cnc.uc.pt).

1

WESTERN LIFESTYLE CONTRIBUTES GREATLY to the prevalence of overweight and obesity, which are associated with metabolic and cardiovascular disorders, including type 2 diabetes mellitus (DM), hypertension, and coronary heart disease (84). Cardiovascular disease remains the leading cause of death in particular among people with DM (56). In 2014, there were 387 million people with DM, and it is projected to be 592 million by 2035 (81).

The prevalence of heart failure (HF) has been increasing (82), and despite advances in therapy and management, it remains deadly, resulting in high mortality rates that rival those of many cancers (9). Almost two-thirds of HF patients have abnormal glucose homeostasis (74). A marker of DM-impaired metabolism in HF patients is the switch from carbohydrates and fatty acids (FA) as sources of energy to preferentially FA (74).

Adipose tissue (AT) has been identified as a dynamic endocrine organ (31, 83) and metabolic sensor, regulating insulin sensitivity, glucose, and lipid metabolism as well as cardiovascular homeostasis (14). Regional, developmental, structural, and functional variations in fat depots exist (31, 83). Epicardial AT (EAT) is a visceral fat depot around the heart located directly over the myocardium (14). EAT is metabolically active, producing hormones and adipokines and locally modulating cardiac structure and function (31, 83). EAT shares the same microcirculation with the myocardium (15), providing energy directly to cardiomyocytes (83), influencing cardiac angiogenesis and immunity, and providing thermal insulation and mechanical protection to the myocardium (83). When deregulated, EAT may play adverse paracrine roles in cardiac arrhythmias and lipotoxic cardiomyopathies (59) as well as invade the outer region of the adventitia in the vascular wall (69). The amount of EAT correlates with insulin resistance, metabolic syndrome (51), and carotid stiffness in hypertensive obese patients (55), contributing to cardiovascular disease (83). Moreover, EAT thickness reflects intra-abdominal visceral (32, 33) and intramyocardial lipid content (49). Thus, EAT volume may play a role in stratification of the cardiometabolic risk and could serve as a therapeutic target (32, 33).

In addition, nonesterified FA profiles are different in EAT compared with subcutaneous adipose tissue (SAT), whereas the saturated FA content is higher and the unsaturated FA content is lower (62). In EAT, glucose utilization is lower compared with intra-abdominal fat (50, 71), and insulin action is impaired (71), resulting in decreased glucose utilization as a substrate in HF.
Table 1. Demographics and clinical characteristics of the study population

<table>
<thead>
<tr>
<th></th>
<th>Nondiabetic Patients</th>
<th>Diabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients (%)</td>
<td>95 (60.1)</td>
<td>63 (39.9)</td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>70.5</td>
<td>79.4</td>
<td>0.215</td>
</tr>
<tr>
<td>Age, yr</td>
<td>64.23 ± 1.37</td>
<td>69.17 ± 1.05</td>
<td>0.058</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.01 ± 0.32</td>
<td>27.62 ± 0.36</td>
<td>0.001***</td>
</tr>
<tr>
<td>Risk factors, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>65.4</td>
<td>85.7</td>
<td>0.004**</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>60.5</td>
<td>79.6</td>
<td>0.011*</td>
</tr>
<tr>
<td>Blood pressure, mm/Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>128.7 ± 2.26</td>
<td>132.3 ± 2.72</td>
<td>0.317</td>
</tr>
<tr>
<td>Diastolic</td>
<td>70.49 ± 1.41</td>
<td>73.00 ± 1.61</td>
<td>0.257</td>
</tr>
<tr>
<td>Medications, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiplatelet</td>
<td>63.0</td>
<td>79.6</td>
<td>0.030*</td>
</tr>
<tr>
<td>Antiarrhythmic</td>
<td>12.3</td>
<td>14.3</td>
<td>0.764</td>
</tr>
<tr>
<td>Anticoagulant</td>
<td>34.6</td>
<td>22.4</td>
<td>0.092</td>
</tr>
<tr>
<td>Antidiabetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>32.7</td>
<td><0.001***</td>
<td></td>
</tr>
<tr>
<td>α-Glucosidase inhibitor</td>
<td>34.7</td>
<td><0.001***</td>
<td></td>
</tr>
<tr>
<td>DPP-4 inhibitor</td>
<td>2.0</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>DPP-4 inhibitor + biguanide</td>
<td>12.2</td>
<td><0.001***</td>
<td></td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>28.6</td>
<td><0.001***</td>
<td></td>
</tr>
<tr>
<td>Sulfonylurea + biguanide</td>
<td>24.5</td>
<td><0.001***</td>
<td></td>
</tr>
<tr>
<td>β-Blocker</td>
<td>55.6</td>
<td>69.4</td>
<td>0.076</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>8.6</td>
<td>22.5</td>
<td>0.014*</td>
</tr>
<tr>
<td>ACEI</td>
<td>49.4</td>
<td>53.1</td>
<td>0.720</td>
</tr>
<tr>
<td>Diuretic</td>
<td>88.9</td>
<td>85.7</td>
<td>0.616</td>
</tr>
<tr>
<td>Electrolyte, KCl</td>
<td>71.6</td>
<td>65.3</td>
<td>0.387</td>
</tr>
<tr>
<td>Statin</td>
<td>55.6</td>
<td>77.6</td>
<td>0.005**</td>
</tr>
<tr>
<td>Vasodilator</td>
<td>12.3</td>
<td>22.5</td>
<td>0.111</td>
</tr>
</tbody>
</table>

Non-CAD patients

<table>
<thead>
<tr>
<th></th>
<th>Nondiabetic Patients</th>
<th>Diabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients (%)</td>
<td>45 (47.4)</td>
<td>20 (31.7)</td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>53.3</td>
<td>60.0</td>
<td>0.618</td>
</tr>
<tr>
<td>Age, yr</td>
<td>62.00 ± 2.27</td>
<td>73.15 ± 1.63</td>
<td>0.003***</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.47 ± 0.54</td>
<td>28.30 ± 0.88</td>
<td>0.007**</td>
</tr>
</tbody>
</table>

NYHA functional classification of heart failure, %

<table>
<thead>
<tr>
<th></th>
<th>I–II</th>
<th>II–III</th>
<th>III–IV</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I–II</td>
<td>7.9; 2.6</td>
<td>11.8; 0</td>
<td>0.886; 0.502</td>
<td></td>
</tr>
<tr>
<td>II–III</td>
<td>50.0; 18.4</td>
<td>58.8; 5.9</td>
<td>0.454; 0.169</td>
<td></td>
</tr>
<tr>
<td>III–IV</td>
<td>15.8; 5.3</td>
<td>17.6; 0</td>
<td>0.659; 0.338</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>5.9</td>
<td>0.002**</td>
<td></td>
</tr>
</tbody>
</table>

LVSF, %

<table>
<thead>
<tr>
<th></th>
<th>I–II</th>
<th>II–III</th>
<th>III–IV</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I–II</td>
<td>13.2; 5.3</td>
<td>23.5; 0</td>
<td>0.247; 0.338</td>
<td></td>
</tr>
<tr>
<td>II–III</td>
<td>52.6; 7.9</td>
<td>58.8; 5.9</td>
<td>0.618; 0.587</td>
<td></td>
</tr>
<tr>
<td>III–IV</td>
<td>13.2; 7.8</td>
<td>11.8; 0</td>
<td>0.706; 0.169</td>
<td></td>
</tr>
</tbody>
</table>

Operation type, %

<table>
<thead>
<tr>
<th></th>
<th>Valvular replacement</th>
<th>86.8</th>
<th>94.1</th>
<th>0.317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valvuloplasty</td>
<td>52.6</td>
<td>35.3</td>
<td>0.172</td>
<td></td>
</tr>
</tbody>
</table>

LVEF, %

<table>
<thead>
<tr>
<th></th>
<th>I–II</th>
<th>II–III</th>
<th>III–IV</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I–II</td>
<td>7.9</td>
<td>17.6</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>II–III</td>
<td>92.1</td>
<td>82.4</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>III–IV</td>
<td>10.5</td>
<td>17.6</td>
<td>0.338</td>
<td></td>
</tr>
<tr>
<td>≥27%</td>
<td>89.5</td>
<td>82.4</td>
<td>0.338</td>
<td></td>
</tr>
</tbody>
</table>

Heart rate, beats/min 72.45 ± 2.49

Table 1.—Continued

<table>
<thead>
<tr>
<th></th>
<th>Nondiabetic Patients</th>
<th>Diabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
</table>
| NYHA functional classification of angina, %
| I–II | 13.2; 5.3 | 23.5; 0 | 0.247; 0.338 | |
| II–III | 52.6; 7.9 | 58.8; 5.9 | 0.618; 0.587 | |
| III–IV | 13.2; 7.8 | 11.8; 0 | 0.706; 0.169 | |
| Operation type, % | Valvular replacement | 86.8 | 94.1 | 0.317 |
| Valvuloplasty | 52.6 | 35.3 | 0.172 | |
| LVEF, % | I–II | II–III | III–IV | P Value |
| ≥50% | 7.9 | 17.6 | 0.208 | |
| ≥50% | 92.1 | 82.4 | 0.208 | |
| ≥27% | 10.5 | 17.6 | 0.338 | |
| ≥27% | 89.5 | 82.4 | 0.338 | |
| Heart rate, beats/min| 72.45 ± 2.49 | 72.41 ± 6.33 | 0.314 | |

Continued

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00384.2015 • www.ajpendo.org

Quantitative measurements are presented as means ± SE, and qualitative parameters are presented as percentage. BMI, body mass index; ACEI, angiotensin-converting enzyme inhibitor; CAD, coronary artery disease; NYHA, New York Heart Association; CCS, Canadian Cardiovascular Society; DPP-4, dipeptidyl peptidase-4; LVEF, left ventricle ejection fraction; LVSF, left ventricle shortening fraction. For normally distributed data, a parametric t-test was performed, whereas a nonparametric Mann-Whitney test was applied for nonnormally distributed data. P < 0.05 was considered significant. For categorical variables, a χ² test was applied. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

patients. However, the rate of insulin-stimulated glucose uptake in EAT cells from HF patients is unknown.

Furthermore, EAT from HF patients expresses lower levels of fatty acid-binding protein 4 (FABP4) (72) and fat-mobilizing genes (35). In addition, loss of diacylglycerol O-acyltransferase 1 (DGAT1) activity in heart muscle reduces gene expression involved in free FA uptake, such as CD36, reducing toxic lipid accumulation in the heart (47). This indicates that entry of long-chain FA (LCFA) into the heart is tightly coupled to both triglyceride (TG) synthesis and lipolysis (11). Moreover, this is consistent with a model of reciprocal regulation between LCFA uptake by CD36, TG synthesis by DGAT1, and TG lipolysis by ATGL, working to buffer the intracellular availability of LCFA while preventing the accumulation of potentially toxic or physiologically active metabolites (11). However, isoproterenol-stimulated lipolysis in EAT from HF patients has not been studied.

Although there are some studies in EAT from HF patients, the metabolic cross-talk between EAT and the myocardium in these patients is largely unknown, and metabolic studies are scarce. Therefore, the main and novel purpose of this study was to evaluate glucose uptake and lipid metabolism in EAT in the presence and absence of DM and to clarify underlying mechanisms that might be implicated in HF by analyzing the expression of genes that regulate glucose and lipid metabolism and how these impact inflammation.
EAT METABOLISM IN HEART FAILURE PATIENTS

Table 2. Biochemical characteristics of the study population

<table>
<thead>
<tr>
<th>Metabolic biochemical parameters</th>
<th>Non-diabetic Patients</th>
<th>Diabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting glucose, mg/dl</td>
<td>96.86 ± 1.78</td>
<td>129.0 ± 4.85</td>
<td><0.0001***</td>
</tr>
<tr>
<td>Fasting insulin, mU/l</td>
<td>5.40 ± 0.66</td>
<td>10.95 ± 2.28</td>
<td>0.417</td>
</tr>
<tr>
<td>Fasting C-peptide, ng/ml</td>
<td>2.14 ± 0.09</td>
<td>2.11 ± 0.12</td>
<td>0.831</td>
</tr>
<tr>
<td>HOMA-IR, units</td>
<td>1.32 ± 0.16</td>
<td>3.94 ± 0.88</td>
<td>0.013*</td>
</tr>
<tr>
<td>HOMA-β, units</td>
<td>64.44 ± 7.97</td>
<td>65.32 ± 13.45</td>
<td>0.017*</td>
</tr>
<tr>
<td>Kidney biochemical parameters, mg/dl</td>
<td>0.40 ± 0.01</td>
<td>0.38 ± 0.01</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Data are presented as means ± SE. HOMA-IR, homeostatic model assessment-insulin resistance index; HOMA-β, HOMA-β-cell function; QUICKI, quantitative insulin sensitivity check index; GOT, glutamic oxaloacetate transaminase; GPT, glutamic pyruvic transaminase; GGT, γ-glutamyl transferase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; INR, international normalized ratio; CK, creatine kinase. For normally distributed data, a parametric t-test was applied, whereas a nonparametric Mann-Whitney U-test was applied for nonnormally distributed data. P < 0.05 was considered significant. *P ≤ 0.05; ***P ≤ 0.001.

Fig. 1. Adipocyte size (μm) and weight (μg) in subcutaneous (SAT) and epicardial adipose tissue (EAT) from heart failure (HF) patients with or without diabetes mellitus (DM) (n of patients is indicated in parentheses). A: scatter plot displaying cell size as a function of the cell weight. Different colors represent each of four groups [SAT + nondiabetic (NDM), SAT + DM, EAT + NDM, and EAT + DM]. B: scatter plot displaying cell size as a function of the cell weight based on disease status. F: adipocyte size based on disease type. G: representative images of hematoxylin and eosin-stained fat depots. Magnification, ×200. Scale bar, 10 μm. Statistical analysis: in A, correlation between cell size and cell weight was evaluated using the Spearman correlation coefficient. SAT + NDM: n = 26; SAT + DM: n = 27; EAT + NDM: n = 26; EAT + DM: n = 27; P < 0.001; E = F. cell size was compared by 1-way ANOVA. P value is as indicated. Moderated outliers, shown as circles in box-and-whisker plots in this and the rest of the figures, lie more than one and a half times the interquartile range (IQR), that is, below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. Extreme outliers, shown as stars in box-and-whisker plots in this and the rest of the figures, lie greater than three times the IQR, that is, below Q1 − 3 × IQR or above Q3 + 3 × IQR.
Adipose tissue gene expression. RNA from SAT and EAT was isolated using the RNeasy MiniKit, and its concentration was determined by OD260 measurement using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA). cDNA was synthesized using the Applied Biosystems High Capacity cDNA Reverse Transcriptase kit. Reverse transcription-polymerase chain reaction was then performed in a Bio-Rad iCycler iQ5. The presence of specific gene products was confirmed with melting curve analysis and elec-

[Figure A: Scatter plots showing cell size vs. cell weight for different tissue types and disease statuses.]

[Figure B: Scatter plots showing cell size vs. cell weight for different disease statuses.]

[Figure C: Scatter plots showing cell size vs. cell weight for different tissue types.]

[Figure D: Box plots comparing cell size across NDM and DM groups for SAT and EAT.]

[Figure E: Box plots comparing cell size across NDM and DM groups for SAT and EAT.]

[Figure F: Box plots comparing cell size across NDM and DM groups for SAT and EAT.]

[Figure G: Micrographs of SAT and EAT tissue samples.]
Proton nuclear magnetic resonance spectroscopy. Forty-nine SAT and 44 EAT biopsies were subjected to high-resolution, magic-angle, spinning-proton nuclear magnetic resonance (HR-MAS 1H-NMR) spectroscopy. Tissues (~15 mg) were inserted into a zirconium rotor with 10 μL of 50 mM trimethylsilyl propionate in D2O, and NMR analysis performed on a Bruker Avance 800 spectrometer using a 4-mm HR-MAS probe (77). Spectra were processed with NutsPro (NMR Utility Transform Software Professional; Acorn, Livermore, CA), as reported previously (77). The TG composition was calculated as described previously (75). The fractions of unsaturated, saturated, and diunsaturated FA were calculated as reported previously (66). The fraction of monounsaturated FA was calculated as $F_A^{\text{monouns}} = F_A^{\text{unsat}} - F_A^{\text{diunsat}}$.

The fraction of saturated FA determined by NMR agrees with previous analysis obtained by gas chromatography-mass spectrometry (39). However, in the NMR analysis of intact adipose tissue biopsies, the fraction of monounsaturated FA is underestimated, whereas that of diunsaturated FA is slightly overestimated (66).

Statistical analyses. Statistical tests were performed in SPSS (version 21) with significance at 0.05. Moderate outliers, shown as circles in box-and-whisker plots in all of the figures, lie more than one and a half times the interquartile range (IQR), that is, below $Q_1 - 1.5 \times \text{IQR}$ or above $Q_3 + 1.5 \times \text{IQR}$. Extreme outliers, shown as stars in box-and-whisker plots in all of the figures, lie more than three times the IQR, that is, below $Q_1 - 3 \times \text{IQR}$ or above $Q_3 + 3 \times \text{IQR}$. For normality, the Kolmogorov-Smirnov test was performed. To assess the role of tissue type or disease status on quantitative variables, nonparametric two-way ANOVA and multivariate ANOVA tests were performed. The Spearman correlation coefficient was also used. To compare variables related to different stimuli, Wilcoxon tests were used when one stimulus was to be compared with basal, and Friedman tests were used when several stimuli were compared with basal. In the latter case, post hoc Wilcoxon tests were conducted when adequate, with Dunn’s test for multiple comparison correction. For lipid metabolism gene expression, we eliminated variables with >10% missing values. The remaining missing values were replaced by the mean value of the corresponding variable. To take into account the correlated values, the expression of individual genes were averaged out (using the mean value) into two variables, the first being lipid storage [variables: $DGAT1$, $FABP4$, peroxisome proliferator-activated receptor-γ (PPARG), sterol regulatory element-binding transcription factor 1 (SREBP1), cluster of differentiation 36 (CD36), fatty acid synthase (FASN), lipin-1 (LPN1)], microsomal triglyceride transfer protein large subunit (MTTP), lipoprotein lipase (LPL), stearoyl-CoA desaturase (SCD1)] and the second being lipolysis [variables: hormone-sensitive lipase (HSL), perilipin 1 (PLIN1), aquaporin-7 (AQP7), β1-adrenergic receptor (B1AR), protein kinase A (PKA)]. For NMR data, variables with >10% missing values were eliminated.

RESULTS

Characterization of AT donors. Of the 95 NDM subjects, 45 had NCAD, and most presented levels II and II–III in the New York Heart Association (NYHA) functional classification of HF, level II in the Canadian Cardiovascular Society (CCS) functional classification of angina, left ventricle ejection fraction (LVEF) ≥50%, and left ventricle shortening fraction (LVSF) ≥27%, as observed in Table 1. The remaining 50 NDM subjects had CAD, and most had levels I and II in the NYHA functional classification, levels I and II in the CCS functional classification of angina, LVEF ≥50%, and LVSF ≥27%. Among the NDM CAD patients, most of them presented three-vessel CAD, as indicated in Table 1.

Fig. 2. Insulin-stimulated glucose uptake in SAT and EAT from HF patients with or without DM. No. of patients is indicated in parentheses. A: glucose uptake in SAT and EAT from the same patients. B: difference between basal and insulin condition based on tissue type. C: difference between basal and insulin condition based on disease status. Statistical analysis: for each tissue type and disease status in A, differences between basal measurements of glucose uptake and corresponding measurements when insulin was used were assessed using Wilcoxon tests. ***,** P < 0.001. For a better visualization of the results, we excluded a value in the DM group (200.06). In B, the difference between basal and insulin conditions was compared based on disease status using a nonparametric 2-way ANOVA. For a better visualization of the results, we excluded a value in the DM group (110.83). In C, the difference between basal and insulin conditions was compared based on tissue type using a nonparametric 2-way ANOVA. P value is as indicated. For a better visualization of the results, we excluded a value in the EAT group (110.83). Open bars, basal; gray bars, insulin.
Fig. 3. Glucose metabolism-related gene expression [Protein-tyrosine phosphatase 1B (PTP1B), glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), IRS2, adiponectin (ADIPOQ), and leptin (LEP)] in SAT and EAT from HF patients with or without DM. No. of patients is indicated in parentheses. Gene expression was normalized using the reference gene β-actin (ACTB) that was selected based on our previous results demonstrating that it does not change under these conditions. Statistical analysis: glucose metabolism-related gene expression was compared between factors (disease status and tissue type) using a nonparametric 2-way multivariate ANOVA (MANOVA).
Of the 63 DM patients, 20 had NCAD, and presented mostly level II in the NYHA functional classification, level II in the CCS functional classification of angina, LVEF \(\geq 50\% \), and LVSF \(\geq 27\% \). The remaining 43 NDM patients had CAD and presented mostly level II in the NYHA functional classification, level II in the CCS functional classification of angina, LVEF \(\geq 50\% \), and LVSF \(\geq 27\% \), as described in Table 1. Among the DM CAD patients, most of them presented three-vessel CAD.

Moreover, DM subjects exhibited a significantly higher body mass index (BMI) and other comorbidities, namely hypertension and dyslipidemia (Table 1).

DM subjects presented a significantly higher homeostatic model assessment-insulin resistance index, fasting blood glucose, and HOMA-\(\beta \) cell function compared with NDM subjects (Table 2).

Subcutaneous and epicardial adipocyte size and weight in HF patients. A strong correlation was found between cell weight and cell size \([p(106) = 0.925, P < 0.001; \text{data not shown}]\). In fact, the relationship between cell weight and cell size was maintained for both depots and subject groups when they were considered independently. Spearman correlations for each group were SAT + NDM \([p(26) = 0.929, P < 0.001]\), SAT + DM \([p(27) = 0.903, P < 0.001]\), EAT + NDM \([p(26) = 0.872, P < 0.001]\), and EAT + DM \([p(27) = 0.945, P < 0.001]\) (Fig. 1, A–C). Cell size was not significantly different (Fig. 1D). The effect of disease status on cell size was nearly significant \([F(1, 102) = 3.738, P = 0.056; \text{Fig. 1E}]\), whereas the effect of tissue type on cell size was significant \([F(1, 102) = 6.787, P = 0.011; \text{Fig. 1F}]\), indicating that cell size is significantly different between EAT (median = 83.00) and SAT (median = 97.70) (Fig. 1F). Moreover, the interaction effect between tissue type and disease status (DM and NDM) yielded an \(F \) ratio of \(F(1, 102) = 0.004, P = 0.951 \), indicating that there is no dependence of the variables.

Figure 1G illustrates histological features of SAT and EAT from one representative NCAD NDM patient. Hematoxylin and eosin (H & E) staining illustrates that SAT cells have a larger diameter than EAT cells.

Glucose uptake in SAT and EAT of HF patients. Insulin-stimulated glucose uptake in isolated SAT and EAT was evaluated in 26 NDM (17 CAD and 9 NCAD) and 27 DM (20 CAD and 7 NCAD) patients. Glucose uptake in each group was significantly elevated compared with basal (no insulin, \(P < 0.001; \text{Fig. 2A} \)). No differences were observed when comparing the difference between basal and insulin conditions in nondiabetic and diabetic patients \([F(1, 102) = 0.023, P = 0.880; \text{Fig. 2B}]\); however, there were differences when comparing tissues \([F(1, 102) = 7.892, P = 0.006]\), indicating a significant decrease in glucose uptake in EAT (median = 5.83) compared with SAT (median = 8.06) (Fig. 2C). The interaction effect yielded an \(F \) ratio of \(F(1, 102) = 4.430, P = 0.038 \), indicating differences between basal and insulin conditions within DM patients between EAT (median = 6.13) and SAT (median = 8.06) and within NDM patients between EAT (median = 4.23) and SAT (median = 8.64).

Glucose metabolism gene expression in SAT and EAT from HF patients. Protein-tyrosine phosphatase 1B (PTP1B), glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), adiponectin (ADIPOQ), and leptin (LEP) gene expression were compared be-
between disease status and tissue type. The main effect of disease status was not statistically significant, with $\chi^2(6) = 6.494, n = 35$, and $P = 0.370$, whereas effect of tissue type was nearly significant, with $\chi^2(6) = 12.478, n = 35$, and $P = 0.052$ (Fig. 3). Relative expression of the different genes was normalized to β-actin expression levels.

Lipolysis in SAT and EAT from HF patients. Isoproterenol-stimulated lipolysis was evaluated in isolated SAT and EAT cells from 22 NDM (12 CAD and 10 NCAD) and 17 DM (11 CAD and 6 NCAD) patients. For each tissue type and disease status, absolute rates of lipolysis between basal lipolysis and the corresponding treatment were different ($P < 0.001$; Fig. 4A). In the SAT + NDM group, significant differences were found between basal and insulin ($P < 0.05$), isoproterenol ($P < 0.05$), and isoproterenol + insulin ($P < 0.05$) as well as between insulin and isoproterenol ($P < 0.05$) and isoproterenol + insulin ($P < 0.05$) (Fig. 4A). In the SAT + DM, EAT + NDM, and EAT + DM groups, significant differences were found between basal and isoproterenol ($P < 0.01$) and isoproterenol + insulin ($P < 0.01$) as well as between insulin and isoproterenol ($P < 0.01$) and isoproterenol + insulin ($P < 0.01$) (Fig. 4A). However, at the isoproterenol and insulin concentrations tested we found no significant antilipolytic effect of insulin (Fig. 4A).

Induced-lipolysis fold changes between disease status were not different ($P = 0.910$; Fig. 4B); however, significant differences were observed between tissues ($P < 0.001$; Fig. 4C). Both isoproterenol ($P < 0.001$) as well as insulin + isoproterenol ($P < 0.001$) were different when comparing tissues. Isoproterenol-stimulated lipolysis was significantly decreased in EAT (median = 234.76) compared with SAT (median = 737.50). There were no significant differences with insulin ($P = 0.093$) within tissues.

Lipid storage and lipolysis gene expression in SAT and EAT from HF patients. We correlated all results from the different genes without applying a correction for multiple comparisons and found moderate to very strong correlations in 74% of the combinations. As described in MATERIALS AND METHODS, the different genes were averaged out into two variables: lipid storage and lipolysis. By overlooking the correlation between genes and using univariate analysis (of variance), we obtained the P values reported in Tables 3 and 4. A strong correlation was found between lipid storage and lipolysis variables ($p(67) = 0.839, P < 0.001$; Fig. 5A). Lipid storage genes were compared between disease status and tissue type, and the main effect was observed in tissue type, $F(1, 97) = 9.176, P = 0.003$ (Fig. 5C), indicating that the expression of genes involved in lipid storage was significantly different between EAT and SAT. The same did not hold true for lipolysis genes, for which no statistical significance was found, which may be due to the fact that it was possible to average out lipid storage genes for a greater number ($n = 101$) of cases than for lipolysis variables ($n = 74$) due to missing values.

Inflammation-related gene expression in SAT and EAT from HF patients. Inflammation-related gene expression was compared between factors (disease status and tissue type). Disease status effect on inflammation was not statistically significant, with $\chi^2(4) = 4.087, n = 62$, and $P = 0.394$. However, tissue type effect was significant, with $\chi^2(2) = 22.265, n = 62$, and $P < 0.001$. The existence of significant differences between tissues was tested using a post hoc Mann-Whitney U-test for each inflammation-related gene expression: interleukin 6 (IL6; $U = 467.0, P = 0.849$), interleukin 8 (IL8; $U = 297.0, P = 0.010$), tumor necrosis factor-α (TNFA; $U = 427.0, P = 0.905$), and serpin E1 (SERPINE1; $U = 239.0, P = 0.001$) (Fig. 6).

Fatty acid composition of SAT and EAT from HF patients. A perfect negative correlation between the saturated and unsaturated FA fractions and between the C16 and C18 fractions was found ($r(91) = -1.000, P < 0.001$).

Monoglyceride (MG), diglyceride (DG), and saturated and C16 fraction measurements were compared between disease status (Fig. 7A) and tissue type (Fig. 7B) and the main effect of disease status was significant ($P = 0.009$; Fig. 7A). The DG fraction ($P = 0.004$), the saturated fraction ($P = 0.003$), and the C16 fraction ($P = 0.018$) were found to be different for disease status. However, no differences were found for the MG fraction. The effect of tissue type was not significant.

DISCUSSION

Our novel findings show that glucose uptake upon insulin stimulation and lipolysis upon isoproterenol stimulation are decreased in EAT compared with SAT in HF patients. Similarly, lipid storage, lipolysis, and inflammation-related gene expression are significantly decreased in EAT compared with SAT from the same patients. In addition, we found that diabetes alters FA composition in SAT and EAT.

Table 3. Lipid storage gene expressions

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>DGAT1</th>
<th>FABP4</th>
<th>PPARG</th>
<th>SREBP1</th>
<th>CD36</th>
<th>FASN</th>
<th>LPIN1</th>
<th>MTTP</th>
<th>LPL</th>
<th>SCD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease status</td>
<td>0.018</td>
<td>0.512</td>
<td>0.197</td>
<td>0.126</td>
<td>0.049</td>
<td>0.430</td>
<td>0.626</td>
<td>0.539</td>
<td>0.904</td>
<td>0.390</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.145</td>
<td>0.053</td>
<td>0.177</td>
<td>0.799</td>
<td>0.107</td>
<td>0.231</td>
<td>0.079</td>
<td>0.351</td>
<td>0.104</td>
<td>0.185</td>
</tr>
</tbody>
</table>

P values relating to differences between tissues, nondiabetics vs. diabetics, and the interaction are reported. DGAT1, diacylglycerol O-acyltransferase; FABP4, fatty acid-binding protein 4; SREBP1, sterol regulatory element-binding protein 1; CD36, cluster of differentiation 36; FASN, fatty acid synthase; LPIN1, lipid 1; MTTP, microsomal triglyceride transfer protein large subunit; LPL, lipoprotein lipase; SCD1, stearoyl-CoA desaturase. For each gene, an analysis of variance was performed to compare the gene expression between tissue type and disease status and also to account for possible interactions.
Although insulin-stimulated glucose uptake was significantly increased compared with basal in all groups, a decrease in glucose uptake in EAT compared with SAT cells from the same patient was observed. EAT has lower rates of glucose utilization (64), which is probably due not only to lower hexokinase and phosphofructokinase activities (32) but also to decreased insulin action (34), which may partly explain the lower glucose uptake and antilipolytic actions of insulin stim-
ulation we observed in EAT. Furthermore, insulin concentra-
tion for half-maximal suppression of lipolysis in fat is 101 pM
in lean but 266 pM in obese subjects, consistent with insulin
resistance in obesity (10). We used supraphysiological insulin
concentrations (1,000 μU/ml = 6,000 pM), and therefore, the
antilipolytic effects of insulin at physiological concentrations
should be evaluated further.

In agreement with our findings, GLUT4 gene expression
was found to be lower in EAT from CAD patients (72),
explaining the decreased insulin-stimulated glucose uptake.
However, the uptake of 18-fluorodeoxyglucose measured by
positron emission tomography was significantly greater in EAT
from patients with atrial fibrillation (AF) vs. non-AF controls
(52) when compared with SAT and visceral thoracic fat, which
was probably due to the rapid uncoordinated heart rates,
increasing cardiac work, and energy requirements in AF
patients. Thus, depending on the cardiac pathology, EAT may
modulate glucose uptake. Abdominal fat cells from DM pa-
tients have decreased insulin action, insulin receptor tyrosine
kinase activity, insulin receptor substrate expression, and PI
3-kinase activity, leading to impaired GLUT4 translocation
and glucose transport (12). There were no further effects of
diabetes on the insulin-induced glucose uptake when the two
groups studied were compared, and the fold increase was very
small compared with what one expects to find in healthy
subjects (68). Alterations in insulin signaling due to the inher-
et insulin resistance observed in HF patients may have played
a key role in the relatively low insulin stimulation effect on
glucose uptake, regardless of diabetes status. The fact that we
had no healthy control subjects matched for age, sex, or BMI,
made it impossible to compare the effect of insulin on glucose
uptake in the subjects studied.

Furthermore, we observed a significant decrease in EAT
lipolysis, compared with SAT from the same HF patients,
regardless of diabetes status. Under physiological conditions
of high energy demand, EAT shows high lipogenic and lipolytic
activities (50, 64, 83), which suggests that EAT may act as a
local energy supply for the adjacent myocardium and/or as a
buffer against toxic levels of free FA (50). Larger adipocytes
from healthy subjects have increased lipolytic capacity com-
pared with smaller ones (44). Interestingly, and in agreement
with previous reports (4, 5), we found epicardial adipocytes to
be lighter and smaller than the subcutaneous adipocytes from
the same patients as well as a very strong correlation between
lipid storage and lipolysis gene expression. Lipid storage gene
expression was significantly decreased in EAT compared with
SAT. The strong correlation between lipid storage and lipolysis
genes suggests that lipolysis gene expression would also be
decreased in EAT compared with SAT, and in fact, our results
agree with the literature, where EAT from HF patients ex-
presses low levels of fat-mobilizing genes such as PLIN1, LPL,
HSL, and ATGL (35). The lower expression of lipolytic genes
in epicardial adipocytes translates into a lower lipolysis rate
compared with SAT. Others have also observed that HSL gene
levels were lower in EAT than in substernal intrathoracic
human fat (26). Moreover, protein expression regulating the
final steps in hormone signaling during lipolysis was increased
in larger adipocytes, explaining the increased lipolytic capacity
in larger cells (44). Thus, at least in part, our lipolysis results
may be explained by the significantly low HSL gene expres-
sion. The low lipid storage and lipolysis gene expression
observed in EAT from HF patients could also be due to insulin
resistance induced by excess free FA in circulation. Besides the
impaired inhibitory effect of insulin on lipolysis, insulin resis-
tance also impairs lipid storage by interfering with pathways
involved in uptake, synthesis, and storage of TG in adipocytes
(57). In addition, in HSL-deficient mice, compensatory redu-
ction in FA esterification and de novo lipogenesis was observed
to counteract the reduced release of free FA into circulation
(89). Importantly, the decrease in lipid storage and lipolysis
genes observed in EAT could be a protective mechanism
against cardiac lipotoxicity, which, ultimately, could lead to
heart steatosis and loss of function. Therefore, the heart should
be less exposed to the deleterious effects of high FA levels in
the bloodstream, which are major contributors to insulin resis-
tance (6) and HF pathogenesis (45). Moreover, the insulin
antilipolytic effect is mediated by cGMP-inhibitable phosphi-
diesterase 3B (16–18, 48, 58), a PI 3-kinase substrate (67)
whose phosphorylation leads to HSL phosphorylation and
activation, increasing lipolysis (22), mechanisms that are im-
paired in diabetes and insulin resistance.

Accordingly, diabetic patients with endogenous hypertri-
glyceridemia are resistant to the antilipolytic action of insulin
when compared with weight-matched normolipemic nondia-
abetic individuals (85).

Other studies have reported mix results regarding the effects
of insulin resistance/DM on antilipolytic effects of insulin in
human adipose tissue (1, 8, 65, 86). These differences may be
due to the different populations studied, type of diabetes,
insulin concentration or in the assays performed to evaluate
lipid metabolism.

It is known that the cause/effect relationship between dif-
ferent pathologies can work in both directions; for example,
HF can lead to metabolic derangements, such as insulin resis-
tance (37), and systemic insulin resistance was reported to be
a risk factor for the development of HF (24). Moreover,
myocardial insulin resistance in advanced dilated cardiomyop-
athy can lead to the subsequent alteration in the insulin-
signaling cascade, impairing both glucose uptake and lipolysis
(73), as we observed in our study. In agreement with our data,
other studies have shown that under cardiac pathological conditions, not only is myocardial insulin signaling compromised, impairing insulin-stimulated glucose utilization, but also lipid metabolism (2, 24, 46).

In addition to diabetes and heart disease, the advanced age of the study population may also contribute to peripheral insulin resistance. SAT from middle-aged (40–59 yr), healthy, normal-weight subjects presents a lower insulin binding per cell than younger subjects, which is due mainly to a decreased insulin receptor number (7). Concomitantly, the degree of antilipolysis was 10–20 times smaller in the older subjects (7).

Fig. 6. Inflammation-related gene expression [IL8, serpin E1 (SERPINE1), IL6, and TNFA] in SAT and EAT from HF patients with or without DM. No. of patients is indicated in brackets. A, C, E, and G: inflammation-related gene expression based on disease status. B, D, F, and H: inflammation-related gene expression based on tissue type. Gene expression was normalized using the reference gene ACTB, which was selected based on our previous results demonstrating that it does not change under these conditions. Statistical analysis: inflammation-related gene expression was compared between factors (disease status and tissue type) using a nonparametric 2-way MANOVA. P value is as indicated. For a better visualization of the results, we excluded from the SERPINE1 graphs a value in the DM (C) and EAT (D) groups (0.3997).
Although we were not able to determine peripheral insulin signaling status in our studied population, they may already present alterations in insulin signaling due to age and HF, with associated effects on lipolysis in response to isoproterenol and insulin. The lack of healthy control subjects matched for age, sex, and BMI prevented us from comparing results with the subjects studied.

Given the importance of inflammation in heart pathophysiology and metabolism, including diabetes (41, 78, 79, 87), we tested the proinflammatory markers IL6, TNFα, IL8, and SERPINE1 gene expression and observed that although there were no differences for IL6 and TNFα, both IL8 and SERPINE1 were significantly decreased in EAT compared with SAT, regardless of disease status, in correlation with the lipolysis results measured in each fat depot. Previous studies demonstrated that lipolysis products induce inflammatory responses by increasing IL8 levels (3, 19, 30). In agreement with our lipolysis results obtained in EAT, the inflammatory markers in EAT were also decreased compared with SAT, perhaps a compensatory mechanism toward cardioprotection. However, other studies have reported IL8 increases in EAT (70, 88), perhaps due to population differences. Previous studies have reported that SERPINE1 was found to be increased in EAT from patients with severe stable CAD (70) and overexpressed in EAT from acute coronary syndrome (43). In our study, SERPINE1 gene expression correlates with the lipolysis results, indicating that increased lipolysis associates with increased inflammation observed in SAT, whereas the decreased lipolysis and inflammatory gene expression observed in EAT may indicate a possible protective mechanism toward the cardiomyocyte. Moreover, depending on the models studied, SERPINE1 may be regulated by insulin and by prescribed medications (25, 43, 53, 76). However, we did not detect any effect of diabetes on inflammatory markers when comparing with nondiabetics with HF. Inflammation is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis (29). It has been demonstrated that IL6 shows cardiodepressive properties (27). In patients with systolic HF, IL6 and TNFα are associated with the functional NYHA class (78). Moreover, patients with left ventricular diastolic dysfunction had significantly higher IL6 and TNFα plasma levels compared with those with normal diastolic function, suggesting a link between low-grade inflammation and the pathogenesis of diastolic dysfunction (21). Furthermore, IL6 and TNFα have been shown to be independent predictors of mortality in HF (20). Recent studies have linked insulin resistance with TNFα and IL6, a measure of proinflammation predictive for DM. Furthermore, increased circulating concentrations of IL6 and TNFα were found in DM and impaired glucose-tolerant subjects (40, 54, 63). The development of cardiac dysfunction is likely to be multifactorial with putative mechanisms, including metabolic disturbances, insulin resistance, myocardial fibrosis, endothelial dysfunction, autonomic dysfunction, and myocyte damage. Proinflammatory cytokines are involved in most if not all of these pathophysiological changes and might be a link between these abnormalities. Thus, due to the large number of factors that are involved in cardiomyopathies, the presence of diabetes probably did not further worsen the inflammatory profile in the collected tissues obtained from our study population, where the results are similar.

In addition, our study population is not naïve for medication and treatments that have anti-inflammatory properties, such as statins, angiotensin blockers, metformin, and pioglitazone (36), and all of these may be masking at least some of the inflammatory effects.

Furthermore, in our study, we observed that DGs and saturated FA were increased in DM patients in both fat depots. The C16 fraction was also decreased in these patients. The TGs stored in fat depots are predominantly saturated FA, palmitic and stearic, which have 16 and 18 carbons, respectively, and are the two most abundant saturated FA in humans (38). These saturated FA are the preferred substrate for the heart and are positively associated with DM (28). Several studies report that saturated FA levels are elevated in obesity and DM and that an excess supply of these molecules can cause diabetic cardiomyopathies (42). In response to chronic high plasma concentration of LCFA, as is the case in DM, the heart is forced to increase
FA uptake, and over time this may result in the development of cardiomyopathies (23). Mechanistically, FA can interact with peroxisome proliferator-activated receptors, which upregulate the expression of enzymes necessary for their disposal through mitochondrial β-oxidation but also stimulate FA uptake (23). This can lead to further increases in FA concentration in the cytoplasm of cardiomyocytes (23). Although the onset of diabetic cardiomyopathies results in an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species and accumulation of lipid intermediates that over time will introduce structural changes that affect cardiac contractile characteristics (23). Accordingly, we observed that DM patients presented an increase in DGs and saturated FA content in both adipose fat depots studied, whereas the C16 fraction was decreased in these tissues, compared with NDM patients. Thus, the DM-induced metabolic changes lead to an excessive accumulation of saturated FA in EAT and SAT. Since C16 FA are metabolized by the heart, leading us to believe that both fat depots release more C16 FA into the bloodstream and will be metabolized and accumulated in the heart of diabetics, resulting in the development of diabetic cardiomyopathy.

In conclusion, although more studies are required to clarify the underlying molecular mechanisms regulating EAT glucose and lipid metabolism in HF patients, our results identify important new markers of glucose and lipid metabolism that are deregulated in EAT in HF patients. In fact, our study indicates that glucose uptake, lipolysis, lipid storage, and inflammation-related gene expression are significantly decreased in EAT compared with SAT in HF patients.

Metabolic alterations can modify energy requirements in the heart and, consequently, contribute to cardiac disease. In our study population, we do not have alterations at the level of the difference between basal and insulin conditions in glucose uptake or isoproterenol-stimulated lipolysis in the presence or absence of diabetes. However, diabetes influenced the adipocyte size and FA composition in both fat depots. Since there are no data available comparing sternal SAT and abdominal SAT, the potential differences between sternal and abdominal subcutaneous fat may explain why we did not observe differences between diabetic and nondiabetic HF patients.

EAT volume may play a role in the stratification of the cardiometabolic risk and serve as a therapeutic target (32, 33), and our data highlight the important metabolic diversity between SAT and EAT in HF patients, with or without diabetes, bringing to light EAT as a potential therapeutic target against altered glucose and lipid metabolism in these patients.

Limitations of the study. The available amounts of EAT and SAT biopsies collected from these patients was insufficient to perform all of the experiments in the same sample. Ongoing studies will evaluate posttranslational modifications of proteins as well as enzymatic activities and insulin signaling. In addition, we were unable to obtain EAT biopsy samples from healthy subjects.

ACKNOWLEDGMENTS

We kindly thank Novo Nordisk for the human insulin, Actrapid, and Dr. L. Carvalho for the H & E image of SAT and EAT.

GRANTS

This work was supported by a SPDF/GIFT award, the European Foundation for the Study of Diabetes, SFRH/BPD/26837/2006, PTDC/SAU-OSM/104124/2008, EXCL/DTD-PIC/00669/2012, Strategic Project 2015 UID/NEU/04539/2013 funded by FEDER through Operational Programme Competitive-ness Factors-COMPETE, and by FCT-Foundation for Science and Technology. E. Carvalho was partially supported by National Institutes of Health Grants P30-AG-028718 and RO1-AG-033761.

DISCLOSURES

The authors declare that they do not have any conflicts of interest. The funding agency had no role in the manuscript content or the decision to publish.

AUTHOR CONTRIBUTIONS

REFERENCES

EAT METABOLISM IN HEART FAILURE PATIENTS

