The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults

Il-Young Kim, Scott Schutzer, Amy Schrader, Horace J. Spencer, Gohar Azhar, Arny A. Ferrando, and Robert R. Wolfe

1Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and 2College of Medicine Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas

Submitted 6 August 2015; accepted in final form 2 November 2015

Kim IY, Schutzer S, Schrader A, Spencer HJ, Azhar G, Ferrando AA, Wolfe RR. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. Am J Physiol Endocrinol Metab 310: E73–E80, 2016. First published November 3, 2015; doi:10.1152/ajpendo.00365.2015.—We have determined whole body protein kinetics, i.e., protein synthesis (PS), breakdown (PB), and net balance (NB) in healthy subjects in the fasted state and following ingestion of ~40 g [moderate protein (MP)], which has been reported to maximize the protein synthetic response or ~70 g [higher protein (HP)] protein, more representative of the amount of protein in the dinner of an average American diet. Twenty-three healthy young adults who had performed prior resistance exercise (X-MP or X-HP) or time-matched resting (R-MP or R-HP) were studied during a primed continuous infusion of L-[2H5]phenylalanine and L-[2H2]tyrosine. Subjects were randomly assigned into an exercise (X, n = 12) or resting (R, n = 11) group, and each group was studied at the two levels of dietary protein intake in random order. PS, PB, and NB were expressed as increases above the basal, fasting values (mg·kg lean body mass·min⁻¹). Exercise did not significantly affect protein kinetics and blood chemistry. Feeding resulted in positive NB at both levels of protein intake: NB was greater in response to the meal containing HP vs. MP (P < 0.00001). The greater NB with HP was achieved primarily through a greater reduction in PB and to a lesser extent stimulation of protein synthesis (for all, P < 0.0001). HP resulted in greater plasma essential amino acid responses (P < 0.01) vs. MP, with no differences in insulin and glucose responses. In conclusion, whole body net protein balance improves with greater protein intake above that previously suggested to maximally stimulate muscle protein synthesis because of a simultaneous reduction in protein breakdown.

essential amino acids; optimal protein intake; protein turnover; stable isotope tracers.

THE PRINCIPAL NUTRITIONAL goal of a protein-rich meal is to induce an anabolic state in which protein synthesis exceeds breakdown. Several recent studies, including our own (25), indicate that the maximum acute stimulation of muscle protein synthesis (MPS) occurs with ingestion of ~20–35 g of high-quality protein (20, 25, 31) or more specifically 0.24 g·kg body wt⁻¹·meal⁻¹ in healthy young adults (19). The maximal dose in terms of stimulation of MPS is less than that typically consumed with the dinner meal in the average American diet, which generates a hypothesis that distributing the amount of protein intake throughout the day can more effectively stimulate anabolic response. However, the assertion that there is limited effectiveness of the conventional protein intake with dinner is based on incomplete assessment of the metabolic response of muscle protein. Importantly, the extent of muscle protein anabolism (the anabolic response) is not simply the response of MPS but rather the net balance between the response of protein synthesis and protein breakdown. We recently demonstrated the potential importance of suppression of protein breakdown in response to dietary intake of meals containing two levels of protein totaling either 0.8 or 1.5 g protein·kg⁻¹·day⁻¹. We found that at both levels of dietary protein whole body net protein balance became positive in the fed state compared with the fasted state, mainly due to reductions in protein breakdown (18). Furthermore, the anabolic response was greater with the higher level of protein intake. Also, previous studies evaluated the anabolic response to protein or amino acids (AAs) in the circumstance of either the ingestion of only AAs/protein (34) or the ingestion of protein occurring in a particular food source (e.g., meat or milk) (20, 24, 25) but not in the context of a complete meal (18). Finally, previous studies have focused entirely on the response of muscle, but this approach may underestimate total anabolic response to feeding. Dietary protein supplies precursors for the synthesis of all proteins in the body. Furthermore, AAs taken up and incorporated into proteins in rapid turnover tissues such as the gut can be later released into systemic circulation and used for synthesis of protein in other tissues, including muscle (13, 14). A further consideration of potential importance is the nature and amount of prior physical activity before a meal. For example, it has been shown that resistance exercise stimulates MPS (28). Despite the stimulation of MPS, even resistance exercise may not result in a positive NB in the fasting state because of the simultaneous increase in muscle protein breakdown (MPB) (28). However, prior resistance exercise may amplify the normal stimulatory effect of protein/AA intake alone (28). Thus it is reasonable to examine whole body effects of exercise in the context of quantifying the anabolic response to different levels of dietary protein.

In the current study we have quantified protein kinetics [protein synthesis (PS), breakdown (PB), and net balance (NB)] at the whole body level before and throughout the response to two levels of protein intake in mixed meals with or without prior resistance exercise in healthy young adults. We hypothesized that J the whole body net anabolic response...
(NB) would be greater with intake of 70 g protein, compared with 40 g protein in mixed meals; and 2) the whole body net anabolic response to either level of dietary protein in mixed meals would be greater following resistance exercise.

SUBJECTS AND METHODS

Subjects. Twenty-three healthy subjects [18 – 40 yr] were recruited from the Little Rock area using local newspaper advertisements and flyers posted around the University of Arkansas for Medical Sciences (UAMS) campus and the Little Rock area. Upon their first visit to the laboratory, a battery of medical tests was performed to determine subject eligibility, including medical history, blood count, plasma electrolytes, blood glucose concentration, and liver and renal function tests. Exclusion criteria ruled out subjects with diabetes, active malignancy within the past 6 mo, gastrointestinal bypass surgery, any unstable medical conditions, and subjects who performed resistance exercise more than once per week. Eligible subjects were then randomly assigned to the resistance exercise group (X) or the resting group (R). Subjects assigned to the exercise group were then tested for determination of their one-repetition maximum (1RM, the heaviest weight lifted one time) of four different exercises (see Exercise protocol) at least 4 days apart from the start of the study. Written informed consent was obtained from all subjects, and the study was approved by the Institutional Review Board at the UAMS.

Experimental protocol. Dual-energy X-ray absorptiometry (QDR-4500A; Holologic, Waltham, MA) was performed for determination of body composition during the screening for subject eligibility (Table 1). Subjects were randomly assigned by a study coordinator to resistance exercise (X) or resting groups (R) and studied at two levels of protein intake. The 7-h tracer infusion protocol is presented in Fig. 1. On the fourth day, subjects reported to the RIOA after an overnight (after 2200) fast. Subjects in the exercise group performed resistance exercise as described above and then rested on a bed for 1 h. During this resting period (both groups), two polyethylene catheters were placed into each lower arm; one for the infusion of stable isotope tracers and the other for “arterialized” blood sampling via a heating box (1). Before the infusion of tracers, a baseline blood sample was collected to determine background isotopic enrichments. For determination of PS, PB, and NB at the whole body level, primed continuous infusions of 15NH$_4$ phenylalanine (prime, 5.04 μmol/kg; rate, 5.04 μmol·kg$^{-1}$·h$^{-1}$) and 15Nphenylalanine (prime, 2.16 μmol/kg; rate, 1.995 μmol·kg$^{-1}$·h$^{-1}$) were performed. To appropriately reach isotopic equilibrium of 15Nphenylalanine tracer infused, a priming dose of 15Nphenylalanine was also injected (prime: 5.04 μmol/kg). All isotope tracers were purchased from Cambridge Isotope Laboratories (Andover, MA). Blood samples were taken at 0, 150, and 180 min before a meal intake (the fasted blood samples) and at 200, 220, 240, 270, 300, 330, 360, 390, and 420 min to measure tracer enrichment and plasma responses of AAs, glucose, and insulin. A total of 12 blood samples were taken during the study (~100 ml). Muscle samples were obtained before meal intake (at ~180 min) and at the end of the metabolic study (at 420 min) from vastus lateralis muscles to determine muscle protein fractional synthetic responses to respective meal intake.

Calculations. Whole body protein kinetics were calculated based on the determinations of the rate of appearance (R_a) into the plasma of phenylalanine and tyrosine and the fractional R_a of endogenous tyrosine converted from phenylalanine as in the previous study (18). Briefly, area under the curve (AUC) of plasma enrichments of phenylalanine and tyrosine tracers (Fig. 2) was calculated using Graphpad Prism 5 for Mac (Graphpad Software, La Jolla, CA) to account for variations in postmeal tracer kinetics (18, 32). Whole body protein kinetics were calculated by dividing kinetic values of phenylalanine and tyrosine by its fractional contribution to protein (4%) (5). For the calculations for whole body protein breakdown rate, contribution from exogenous meal and tracers infused were subtracted from total R_a. The following equations were used for the calculations of whole body protein kinetics:

\[
\text{Total rate of appearance into plasma} (R_a) = \frac{F}{E}
\]

\[
\text{Fractional } R_a \text{ of Tyr from Phe} = \frac{E_{\text{Tyr}M+5} + E_{\text{TyrM+5}}}{E_{\text{PheM+5}}}
\]

\[
\text{Phe hydroxylation rate} = \text{fractional } R_a \text{ of Tyr from Phe} \times Ra \text{ Tyr}
\]

\[
\text{Protein synthesis rate} (PS) = \left[\frac{(R_a \text{ Phe} - \text{Phe hydroxylation rate}) \times 25}{\text{Phe hydroxylation rate}}\right]
\]

\[
\text{Protein breakdown rate} (PB) = \left[\frac{(R_a \text{ Phe} - F_{\text{me}}) \times 25 - \text{PRO}}{\text{Phe hydroxylation rate}}\right]
\]

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th>Subject characteristics</th>
<th>Resting</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects (M/F)</td>
<td>11 (4/7)</td>
<td>12 (8/4)</td>
</tr>
<tr>
<td>Age, yr</td>
<td>31.0 ± 1.6</td>
<td>29.3 ± 1.4</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>82.7 ± 6.5</td>
<td>84.7 ± 4.6</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.0 ± 1.7</td>
<td>27.6 ± 1.6</td>
</tr>
<tr>
<td>LBM, kg</td>
<td>55.0 ± 3.7</td>
<td>54.5 ± 2.5</td>
</tr>
<tr>
<td>Fat mass, %</td>
<td>27.7 ± 1.8</td>
<td>30.0 ± 2.1</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SE. M/F: number of male and female subjects in the studies; BMI: body mass index; LBM, lean body mass. There were no significant statistical differences in any variables with respect to physical characteristics.
Table 2. Macronutrients of 3-day run-in on day 1–3 and metabolic infusion study on day 4

<table>
<thead>
<tr>
<th>Group</th>
<th>Activity/Protein levels</th>
<th>Energy intake, kcal</th>
<th>Protein</th>
<th>Fat</th>
<th>CHO</th>
<th>Fiber, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MP</td>
<td>2,541 ± 103</td>
<td>84.5 ± 4.6</td>
<td>13.0 ± 0.5</td>
<td>100.3 ± 4.3</td>
<td>34.8 ± 0.3</td>
</tr>
<tr>
<td>HP</td>
<td>2,575 ± 107</td>
<td>85.0 ± 4.7</td>
<td>12.9 ± 0.4</td>
<td>101.7 ± 4.1</td>
<td>34.9 ± 0.2</td>
<td>32.4 ± 14.4</td>
</tr>
<tr>
<td>R</td>
<td>MP</td>
<td>2,549 ± 146</td>
<td>82.4 ± 6.2</td>
<td>12.6 ± 0.3</td>
<td>100.3 ± 5.4</td>
<td>34.8 ± 0.2</td>
</tr>
<tr>
<td>HP</td>
<td>2,589 ± 83</td>
<td>83.3 ± 6.5</td>
<td>12.5 ± 0.3</td>
<td>102.0 ± 6.0</td>
<td>34.8 ± 0.1</td>
<td>347.3 ± 19.9</td>
</tr>
</tbody>
</table>

Interventional foods of metabolic infusion study on day 4

<table>
<thead>
<tr>
<th>Sex & n (X/R)/Protein Levels</th>
<th>Meal, kcal</th>
<th>Beef protein, g</th>
<th>Protein</th>
<th>Fat</th>
<th>CHO</th>
<th>Nonprotein Energy, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 12 (8/4)</td>
<td>1,297</td>
<td>21.1</td>
<td>44.1</td>
<td>76.2</td>
<td>107.3</td>
<td>61.1</td>
</tr>
<tr>
<td>HP</td>
<td>1,301</td>
<td>52.7</td>
<td>70.0</td>
<td>68.9</td>
<td>95.3</td>
<td>60.8</td>
</tr>
<tr>
<td>F 11 (4/7)</td>
<td>1,101</td>
<td>21.1</td>
<td>39.7</td>
<td>64.2</td>
<td>89.0</td>
<td>61.4</td>
</tr>
<tr>
<td>HP</td>
<td>1,103</td>
<td>52.7</td>
<td>65.7</td>
<td>56.9</td>
<td>77.1</td>
<td>60.9</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SE. Each subject consumed his or her respective interventional foods based on their sex; n = number of subjects. X, exercise group; R, resting group; MP, low protein; HP, higher protein; M, male; F, female; CHO, carbohydrate.

Net protein balance = PS − PB

MPS (%/h) = [(E_{BP2} − E_{BP1})/(E_m × t)] × 60 × 100

Enrichment (E) is expressed as tracer-to-tracee ratio (TTR) or mole percent excess (MPE), calculated as TTR/(TTR + 1). TTR was used for calculations of PB whereas MPE was used for calculations of PS. E is enrichment of respective tracers. F is the tracer infusion rate into a venous site: F_{F_{phenylalanine}} are plasma enrichments of tyrosine tracers at M + 4 and M + 5 relative to M + 0, respectively. The correction factor of 25 is for conversion of value for phenylalanine to protein based on the assumption that contribution of phenylalanine to protein is 4% (100/4 = 25) (5). PRO is the amount of exogenous protein (g) that was the amount of AAs appearing in the circulation as a result of the exogenous protein digestion, accounting for splanchnic extraction (29%) of AAs in young adults (30). The hydroxylation rate is the rate of appearance of tyrosine derived from phenylalanine through process of hydroxylation. Calculation of MPS was performed as previously described (18). E_{BP1} and E_{BP2} are the enrichments of protein bound L-[ring-2H5]phenylalanine in the first and second muscle biopsies, respectively, and E_m is the mean plasma enrichment (180 → 420 min) of the L-[ring-2H5]phenylalanine. t

Fig. 1. Tracer infusion protocol. X, exercise; R, resting.
comparisons for kinetics between fasted and fed states were not variability in the fasting kinetic values (Fig. 3). Statistical changes from the fasted to the fed states to account for any body protein kinetics (NB, PS, and PB) were calculated as

RESULTS
analyses.

Phenylalanine tracer enrichment from the vastus lateralis muscles at 180 and 420 min were determined by using liquid chromatography-mass spectrometry (QTrap 5500 MS; AB Sciex) using internal standard method (12). Preparations of muscle tissue samples obtained from the vastus lateralis muscles at 180 and 420 min were performed as previously described (18). Phenylalanine tracer enrichment from muscle bound protein was determined as in plasma analyses.

Statistical analysis. Mixed effects ANOVA models were used to analyze protein kinetics (NB, PS, and PB), MPS, and concentrations of AAs, insulin, and glucose in the plasma. Each model included fixed effects for protein amount (MP and HP) and physical activity (R and X). Because this was a cross-over study, factors representing sequence order and period were included in the model to allow for the assessment of possible carryover effects. The analyses of the AA, insulin, and glucose data also included sampling time, which was modeled as a continuous variable. P < 0.05 were considered to be statistically significant. In cases where multiple testing was necessary, Sime’s method was used to adjust the P values. This analysis was performed using SAS (version 9.4 SAS Institute, Cary, NC).

RESULTS

Protein kinetics at whole body and muscle levels. Whole body protein kinetics (NB, PS, and PB) were calculated as changes from the fasted to the fed states to account for any variability in the fasting kinetic values (Fig. 3). Statistical comparisons for kinetics between fasted and fed states were not made, since the focus of this paper was the response to dietary intake of protein. There was no sequence (MP and HP) effect on any kinetics (for all, P > 0.39). In contrast to the hypothesis, we did not find an effect of exercise on protein kinetics (P > 0.490). However, we found there were significant effects of protein amount on the protein kinetics (P < 0.00005). NB was increased in both MP and HP groups, with the increase in response to HP significantly greater than the response to MP (for all, P < 0.00001). PS was stimulated in response to both levels of protein intake, and the magnitude was greater with HP. Similarly, PB was decreased in both MP and HP groups, with the reduction in PB markedly greater in the HP group (for all, P < 0.00001). Although the difference in NB between MP and HP groups was due to differences in the magnitude of changes in both PS (P < 0.00004) and PB, the predominant factor in the difference in NB was the greater reduction in PB in the HP group. MPS responses following meal intake are presented in Fig. 4. There were no significant effects with respect to interaction (group-by-amount), protein amount, and groups (R vs. X) for MPS (for all, P > 0.25).

Plasma concentrations. Plasma responses of insulin, glucose, and total essential amino acids (EAA) and nonessential amino acid (NEAA) are expressed as area under the curves in Figs. 5 and 6. There was no significant exercise effect on any concentration value (P > 0.150). For the EAA, there was a protein-by-time interaction (P < 0.00001), which suggests the effect of protein amount depends on the time elapsed since ingestion. Furthermore, there was a significant effect of protein amount (P < 0.001): EAA was significantly higher with HP compared with MP. For NEAA, there was a significant protein effect (P < 0.00001) that was not dependent on time: NEAA was significantly higher with HP compared with MP. Both insulin and glucose were elevated upon meal intake (P < 0.0001; Fig. 6). However, there was no protein effect for insulin (P = 0.4053) or for glucose (P = 0.0866).

DISCUSSION

In this study we assessed the response to ingestion of isocaloric meals that contained either the amount of protein (i.e., MP) that others have considered to be optimal based on the effect on stimulation of MPS or twice the moderate amount of protein (i.e., HP). We found that both levels of protein intake

Fig. 2. Plasma enrichments of infused tracers (A: Phe; B: Tyr) before and following a meal intake containing ~40 g [moderate protein (MP)] or ~70 g [high protein (HP)] of dietary protein with prior resistance exercise (X) or time-matched resting (R). Values are expressed as means ± SE. TTR, tracer-to-tracee ratio.

Fig. 3. Changes in rates of whole body protein net balance (NB), synthesis (PS), and breakdown (PB) from the fasted state in response to meal containing ~40 g (MP) or ~70 g (HP) of dietary protein with prior resistance exercise (X) or time-matched resting (R). *Significantly different from MP within the same activity group (P < 0.0001). Values are expressed as means ± SE.

AJP-Endocrinol Metab \(\text{doi:10.1152/ajpendo.00365.2015} \) • www.ajpendo.org
resulted in a positive whole body NB (i.e., anabolic response) and that the higher level of protein intake resulted in a significantly greater anabolic response than the previously described “optimal” amount of protein (20, 25). The greater NB with the higher protein intake was achieved largely through a greater reduction in PB and, to a lesser extent, through a greater increase in PS than with the lower protein intake.

Change in protein mass of the body is not determined solely by PS but by the balance between PS and PB. However, the important role of changes in PB in amplifying the anabolic response to increased dietary protein in the context of mixed meals has been largely ignored. The previously suggested “optimal dose” of protein intake in a meal (20, 25, 31) was recommended entirely based on the response of PS at the muscle level. The determination of the true optimal dose of protein in a meal should also account for the other side of the protein balance equation, i.e., PB. There is a complex relationship between protein synthesis and breakdown in a variety of circumstances. In general, PS is closely linked to PB, as AAs derived from PB serve as the major source of precursors for the synthesis of new proteins (32). For example, in clinical circumstances such as in type I diabetes, NB may be negative, indicating a net catabolic state. Nonetheless, PS is likely to be normal (26) or paradoxically increased (21). The maintenance of a normal or elevated rate of PS in the catabolic circumstance of a negative NB can be attributed to the increased availability of intracellular AAs resulting from accelerated PB. Since some oxidation as well as outward transport of AAs released from PB occurs continuously, PS generally cannot keep pace with accelerated PB in a catabolic state. If only PS is measured in this circumstance, it would appear that the individual is not in a catabolic state, whereas in fact an (unmeasured) elevated rate of PB is responsible for the negative NB characteristic of a catabolic state. Alternatively, in an anabolic state in which stimulation of PS is the principal response driving the improvement in NB, PB may be either unchanged or increased, but to a lesser extent than PS (17, 27, 29). In contrast to the previous observation that the maximal MPS is achieved through increases in PS without apparent changes in PB (17, 27, 29). However, in the context of mixed meals, the main contributing factor to achieving positive NB appears to be reductions in PB, not in increases in PS, as shown in our previous findings (18). In contrast to the previous finding at one recommended dietary allowance (1 RDA 0.8 g·kg\(^{-1}\)·day\(^{-1}\)), both levels of protein intake in the present study not only prevented plasma AA levels from declining but actually increased plasma AA levels well above the fastest levels. The magnitude of increases in plasma EAA levels in the present study was comparable to that observed when the protein was given by itself (e.g., 40 g of protein intake in the exercise groups in both studies) (20). These findings are consistent with the notion that plasma EAA levels are the main determinant of
lack of an exercise effect on the response to dietary protein in the current study. It is likely that a maximal increase in MPS was already achieved in the MP. In support, we observed no significance increases in MPS with HP compared with MP in both exercise and resting groups. However, it is also possible that in our study a stimulation of MPS after exercise was diminished over the 7-h experimental time period (22) as it has been shown that MPS response generally peaks within ~2 h (2, 11). An effect of the meal on protein breakdown is also a possible explanation for the lack of an effect of prior exercise. MPB increases in response to resistance exercise (6, 8, 23). On the other hand, carbohydrate feeding suppresses MPB via insulin (3, 9). However, insulin has differential effects on MPB at resting or following exercise. For example, Biolo and Wolfe (8) have shown that combined infusions of insulin and glucose abolished postexercise stimulation of MPB but not in resting state in healthy male adults (8). Glynn et al. (16) have recently shown a reduction in MPB following combined ingestion of 20 g EAA and carbohydrate (30 or 90 g). Thus a suppression of PB by insulin may have contributed to the absence of an exercise effect on NB in the present study.

The mechanisms responsible for the greater reduction in PB with HP compared with MP are unclear. Plasma insulin responses were similar between HP and MP, which was to be expected since the meals contained similar amounts of carbohydrate. Thus differences in plasma AA response between groups cannot be attributed to insulin alone. We have previously postulated that intracellular EAAs play a role in regulating protein breakdown. When the rate of EAA influx into the intracellular compartment exceeds the capacity of the cell to incorporate EAAs into protein, intracellular EAA concentrations will increase. Thus, at low rates of entry of EAAs, such as occurs after a small dose of dietary protein, the rate of protein synthesis will be stimulated sufficiently to maintain constant levels of EAAs. However, at higher rates of entry of EAAs the corresponding intracellular concentrations will rise, and this may inhibit protein breakdown. Consistent with this notion, Bohé et al. (10) demonstrated that intracellular EAA concentrations remained constant during the infusion of an AA mixture at increasing rates up to 87 mg·kg\(^{-1}\)·h\(^{-1}\). MPS increased proportionately to the increases in AA infusion rate. When the AA infusion rate was increased to 261 mg·kg\(^{-1}\)·h\(^{-1}\), there was no further stimulation of MPS, indicating that the maximal capacity of the cell to dispose of free EAAs via incorporation to protein had been exceeded. At that point the intracellular concentrations of EAAs increased significantly. The amounts of AA infused over 4 h in the study by Bohé et al. (10) were ~25 g (87 mg·kg\(^{-1}\)·h\(^{-1}\)) and 50 g (261 mg·kg\(^{-1}\)·h\(^{-1}\)), respectively, which are comparable to MP (29 g) and HP (50 g) in the present study, assuming that 71% of the ingested protein was absorbed and appeared into systemic circulation (30). In accordance with the notion, we observed that MPS did not increase with HP, compared with MP, regardless of groups. Furthermore, in contrast to the present study, in our previous study differences in NB between 1RDA and ~2RDA were solely due to differences in PS. This suggests that the amount of protein intake in our previous study (average protein intake/meal <40 g even in the higher protein group) might not reach the threshold level above which PB is reduced. It also must be considered that some aspect of the reductions in PB may be due to a limitation of the methodol-
ogy. Total protein breakdown is the sum of \(R_h \) AAAs into plasma and rate of AAs that are released from protein breakdown but directly reincorporated into protein without appearing in plasma (33). The tracer methodology used in the present study only determines \(R_h \) AA using a representative EAA (i.e., phenylalanine), which thus could underestimate total PB if reincorporation of AA released from PB to proteins is elevated due to feeding (via insulin) (4). Although total PB might be underestimated due to the methodological limitation, this does not explain differences in PB between MP and HP. In addition, the magnitude of reductions in PB in both MP and HP is far greater than those of whole body PS. Thus it is unlikely that the difference in PB is due to a methodological limitation. Taken together, we found PB was reduced to a greater extent with HP compared with MP despite similar plasma insulin responses. This suggests the existence of factor(s) affecting MPB, other than the insulin response, and intracellular EAAs are good candidates.

In the present study, we observed increases in PS with both levels of protein intake above the fasted values. It has been shown that stimulation of MPS is mainly affected by extracellular (plasma and interstitial) AA availability (10), and systemic insulin response following intake of mixed meals leads to hypoaminoacidemia via stimulating AA uptake and perhaps inhibiting protein breakdown (4). Thus, to stimulate MPS, it is important to prevent plasma AA concentration from declining by giving a sufficient amount of protein. A decline in plasma AAs can occur following relatively small amounts of protein intake in the context of mixed meals, as shown in our previous study (18), leading to reductions in PS from the fasted state despite the intake of protein. In the present study, both levels of protein intake that resulted in progressive increases in plasma EAA (also NEAA) levels were accompanied by increases in PS above the fasted states, confirming the importance of plasma AA availability for stimulation of PS (10). Although all of our meals contained more than the dose (35 g) of protein promoted as optimal, we observed further increases in PS with HP (70 g) compared with MP (40 g). It is likely that increases in whole body PS likely reflected increases in PS in tissues other than muscle, such as gut (14) as we did not find increases in MPS with HP compared with MP. Consistent with this notion, it was reported that feeding and concomitant insulin response increase gut tissue net protein synthesis (13). Stimulation of gut protein synthesis is potentially beneficial, particularly in a situation where MPS has been already maximized. Proteins retained in the gut can be released into the circulation as a consequence of gut protein turnover and then be used for MPS (14). This mechanism could be particularly important overnight, in which the fasting state is predominated by PB, with resultant negative NB.

In conclusion, in the context of a mixed meal, whole body net protein balance increases in healthy young individuals with protein intake above the amount of protein that was previously shown to maximally increase muscle protein synthesis. The increase in net balance was primarily the result of reductions in protein breakdown, and to a lesser extent, increases in protein synthesis. Prior exercise did not influence this response in the setting of our experiment.

ACKNOWLEDGMENTS

We thank the research subjects for participation in the study. We also thank the research staff/associates for support in conducting isotope tracer infusion protocols and sample analyses; Cosby J. Lasley, Orlov Alexandra, and Josh Spore for coordinating study subjects and helping conducting protocols of the resistance exercise and the isotope infusion study; and Josh Spore and Rick Williams for liquid or gas chromatography-mass spectrometry analysis and determination of blood chemistry. Lastly, we thank the study dietician Amanda M. Dawson for preparing study foods for subjects.

GRANTS

The project was financially supported by a grant from National Cattlemen’s Beef Association. The project was partially supported by Pepper Center Grant AG-028718 and National Center for Advancing Translational Sciences (NCATS) Awards U1TR000039 and KL2TR000063.

DISCLAIMERS

The content is solely the responsibility of the authors and does not necessarily represent the official view of the NCATS or the National Institutes of Health.

AUTHOR CONTRIBUTIONS

REFERENCES

12. de Betue CT, Joosten KF, Deutz NE, Vreugdenhil AC, van Waardenburg DA. Arginine appearance and nitric oxide synthesis in critically ill