New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line

Kiyoshi Terawaki,1,5 Yumi Sawada,1 Yohei Kashiwase,1,3 Hirofumi Hashimoto,4 Mitsuhiro Yoshimura,4 Masami Suzuki,1 Kanako Miyano,1 Yuka Sudo,1,3 Seiji Shiraiishi,1 Yoshikazu Higami,3 Kazuyoshi Yanagihara,2 Yoshi Kase,2 Yoichi Ueta,4 and Yasuhiito Uezono1

1Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan; 2Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan; 3Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan; 4Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; 5Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan

Submitted 1 March 2013; accepted in final form 5 December 2013

Terawaki K, Sawada Y, Kashiwase Y, Hashimoto H, Yoshimura M, Suzuki M, Miyano K, Sudo Y, Shiraiishi S, Higami Y, Yanagihara K, Kase Y, Ueta Y, Uezono Y. New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am J Physiol Endocrinol Metab 306: E373–E387, 2014. First published December 17, 2013; doi:10.1152/ajpendo.00116.2013.—Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced muscle, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced muscle weight, fatigue, and increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45c185. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.

cachexia; leukemia inhibitory factor; rikkunshito; stomach cancer model; anorexia

CANCER CACHEXIA, a multifactorial syndrome characterized by anorexia and the loss of body weight, adipose tissue, and skeletal muscle, is observed in 80% of advanced cancer patients and accounts for at least 20% of cancer-related deaths (20, 35, 42). This syndrome causes not only poor quality of life (QOL) but also poor responses to chemotherapy, highlighting the need for improved cancer cachexia treatments. Weight loss, the most prominent clinical feature of cachexia, is observed in 30–80% of cancer patients, depending on tumor type. For example, weight loss occurs at a very high frequency (83%) in stomach and pancreatic cancer patients but is less prominent in patients with breast cancer, acute nonlymphocytic leukemia, and sarcomas (35). Although cachexia strongly impacts the success of therapeutic treatments, the mechanisms underlying this syndrome are not fully understood. Stomach cancer patients in particular have the highest incidence of cachexia; however, few experimental models for the study of stomach cancer cachexia have been established (4, 14, 66).

A useful cachexia model must meet three of the following five diagnostic criteria in addition to weight loss: anorexia, decreased muscle strength, fatigue, low fat-free mass (FFM) index, and abnormal biochemistry (anemia, increased inflammatory markers, and low serum albumin) (14). Moreover, Argilés et al. (1) reported that two specific indicators, anorexia and metabolic disturbances, should be identified before arriving at a diagnosis of cachexia-associated weight loss. Although body weight maintenance is the most important end point of any cachexia treatment, body composition and QOL should also be monitored (1). Accordingly, anorexia and body composition are very important in both the diagnosis and treatment of cachexia and should be present in any experimental model designed to study this syndrome.

To address the need for an experimental stomach cancer cachexia animal model, we previously screened 15 human stomach cancer cell lines for their ability to induce weight loss in mice after subcutaneous implantation (63). Among the cell lines that were screened, only the MKN-45 cell line induced body weight loss, with an incidence of 40% in tumor-bearing mice (63). On the basis of these findings, we established two novel cell lines from MKN-45 cells: MKN45c185 and 85As2 (63). Implantation of MKN45c185 cells induces body weight loss in mice with 100% efficiency. The 85As2 cell line, derived from peritoneal metastasis of orthotopically implanted MKN45c185 cells, has a strong capacity to induce peritoneal dissemination and body weight loss (100% efficiency) in mice. Anorexia is a key factor in both the diagnosis and treatment of cachexia. Appetite facilitation reinforces physical strength and improves QOL. Thus, anorexia is very important for the evaluation of cachexia. In our previous mouse model, evaluation of cachexia based on weight loss was possible, whereas anorexia could not be used to assess cachexia because of instability in the reduction of food consumption (63). There-
fore, our mouse cachexia model was not suitable to evaluate drug efficacy or mechanisms of cachexia-associated anorexia. To address this problem, we aimed to establish two novel stomach cancer cachexia models by implanting MKN45cI85 and 85As2 cell lines into nude rats. We determined the usefulness of these cancer cachexia models in evaluating anorexia, body composition changes (including low FFM), and weight loss. Moreover, body composition changes, including low FFM, are useful in elucidating the mechanisms of anorexia associated with stomach cancer cachexia. To investigate the underlying mechanisms of cachexia in these models, plasma levels of cytokines known to be involved in cancer cachexia development, such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)α, and leukemia inhibitory factor (LIF) (13, 19, 40, 58), were also evaluated. Because the hypothalamus is a key regulator of energy homeostasis and a major site for the integration of metabolic signals in the central nervous system, the expression of hypothalamic feeding-regulating peptides was determined. In addition, the expression of the muscle-specific E3 ubiquitin ligases atrogin-1/muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF-1), which are important mediators of skeletal muscle loss, was also evaluated (6, 25).

To assess the efficacy of our novel stomach cancer cachexia rat models in evaluating treatment outcomes, we examined the impact of rikkunshito therapy on cachexia-associated symptoms in these models. Rikkunshito has been approved by the Ministry of Health, Labor, and Welfare of Japan and is widely used in cancer cachexia models in Japan and is approved by the committee (approval nos. T09-050-M02 and T09-050-C04), and they met the ethical standards required by the law and the guidelines concerning experimental animals in Japan. Cell lines and culture conditions. MKN45cI85 and 85As2 cell lines were established from the human stomach MKN-45 cancer cell line, as described previously (63). Cells were maintained in RPMI 1640 medium (Nacalai Tesque, Kyoto, Japan) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 IU/ml penicillin G, 100 µg/ml streptomycin sulfate (Nacalai Tesque) under a 5% CO2 and 95% air atmosphere at 37°C.

Tumor cell implantation. MKN45cI85 and 85As2 cells were harvested from confluent cultures after brief exposure to 0.25% trypsin and 0.2% ethylenediaminetetraacetic acid. Cells were washed once in serum-free medium and resuspended in phosphate-buffered saline. Anesthetized rats were subcutaneously inoculated with either 1 × 106-107 cells/site (tumor-bearing rats) or saline alone (non-tumor-bearing control rats) in the left and right flanks. The major and minor tumor axes were measured, and the tumor volume was estimated using the following equation: tumor volume (cm3) = major axis (cm) × minor axis (cm) × minor axis (cm) × 1/2, and tumor volume was converted to tumor weight (mg/mm3) (14, 17, 66).

Rat model characterization. Body weight and composition, organ and tissue weight, food and water consumption, and grip strength were evaluated in each model. Body weight and food and water consumption were measured weekly. Body composition was determined using the ImpediVET Bioimpedance Spectroscopy device (ImpediMed, Brisbane, Australia) to accurately measure FFM, fat mass (FM), and total body water (TBW) (52). Blood collected from the abdominal aorta was centrifuged (3,000 rpm, 10 min), and the plasma was stored at −80°C until analysis. Tissues were immediately dissected and weighed. Gastrocnemius muscle tissue was fixed with 10% formalin and embedded in paraffin for histological analysis. Cross-sectional area, perimeter, Feret diameter, and minimum Feret diameter were measured weekly. Cancer cachexia clearly developed in tumor-bearing rats 2 wk after implantation. After that, tumor-bearing cancer cachectic rats were divided into two groups; one group was not treated and the other group had their tumours removed. Tumours were removed with surgical scissors, and the incision was closed using a surgical needle and sutures under anesthesia. The body composition was measured at weeks 0 (before tumor implantation), 2 (before tumor removal), and 4 (after tumor removal). Grip strength was measured, and the plasma and gastrocnemius muscle were collected 5 wk after implantation.

Real-time polymerase chain reaction. Real-time polymerase chain reaction (PCR) was performed as described previously (56). Briefly, the hypothalamic area was dissected on an ice-cold metal plate, and total RNA was isolated using an Isogen kit (Nippon Gene, Tokyo, Japan) according to the manufacturer’s instructions. First-strand cDNA was reverse transcribed from 5 µg of total RNA using the SuperScript First-Strand Synthesis System (Invitrogen, Carlsbad, CA) in a final volume of 100 µl. Diluted cDNA (2 µl) was amplified in a rapid thermal cycler (LightCycler; Roche Diagnostics, Barcelona, Spain) using LightCycler 480 SYBR Green I Mastermix (Roche, Barcelona, Spain) and the following primers: atrogin-1/MAFbx 5′-GAA GAC CGG CTA CTG TGG AA-3′ (forward) and 5′-ATC AAT CGG CTC ATG TGG CTA-3′ (reverse), MuRF-1 5′-AGG ACT CCT GCC GAG TGA C-3′ (forward) and 5′-TTG TGG CTC AGT TCC-3′ (reverse), forkhead box 01 (Foxo-1) 5′-TCA GGC TAG GAG TTA GTG AGC A-3′ (forward) and 5′-AAG GAG GGG TGA AGG GCA TC-3′ (reverse), Foxo-3 5′-CTC AGC CAG TGG ACA GTG AA-3′ (forward) and 5′-GCT CTG TAG GAG TGA TGC AGC-3′ (reverse), Foxo-4 5′-GCC GAG CCT GTC CTT ATC CA-3′ (forward) and 5′-TTG ATG GTG TGA CCA CCT ATC CCT A-3′ (reverse), IGF-I 5′-GCC CTC TGG TGG TGG ATT A-3′ (forward) and 5′-TCC GAA TGC TGG AGC CAT A-3′ (reverse), and glyceraldehyde-3-phosphate dehydrogenase 5′-CCC CCA ATG TAT CCG TGG TG3-3′ (forward) and 5′-TAG CCC AGG ATG CCC TTT AGT-3′ (reverse). PCR products were quantified using Light...
Cycler 480 software to analyze the exponential phase of amplification and the melting curve as recommended by the manufacturer. The amount of target mRNA in the experimental group relative to that in the control group was determined from the resulting fluorescence and threshold values (CT) using the $2^{-\Delta\Delta C_T}$ method (37).

Cytokine measurements. Plasma levels of human IL-1β, IL-6, IL-8, TNFα, and LIF were measured using the Luminex Multiplex Assay (Affymetrix, Billerica, MA) (18). Rat IL-1β, IL-6, TNFα, keratinocyte-derived chemokine (KC), and interferon (IFN)γ plasma levels were measured using the Procarta Cytokine Assay Kit (Affymetrix). Plasma α1-acid glycoprotein and albumin levels were measured using a rat α1-acid glycoprotein enzyme-linked immunosorbent assay (ELISA) kit (Immunoassay Consultants Laboratory, Newberg, OR) and a rat albumin ELISA kit (Shibayagi, Gunma, Japan), respectively. Human cytokine levels were also measured in MKN45cl85 and 85As2 cell culture supernatants (5 × 10^5 cells/well) at 24 and 48 h.

In situ hybridization. In situ hybridization was performed as described previously (55). Briefly, frozen 12-μm-thick coronal brain sections were prepared in a cryostat at −20°C, thawed, and mounted onto gelatin/chrome alum-coated slides. The paraventricular nucleus

Fig. 1. Effects of MKN45cl85 and 85As2 cell implantation on body weight (A), tumor size (B), fat-free mass (FFM; C), fat mass (FM; D), total body water (TBW; E), and muscle and adipose tissue weights in nude rats (F). Rats were inoculated subcutaneously (sc) with MKN45cl85 or 85As2 cells in both flanks (1 × 10^7 cells/site) at week 0. Rats inoculated with saline served as a control group. Each data point or bar represents the mean ± SE of 4–5 rats. Differences between groups were evaluated using Student’s t-test or Welch’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control group. Gre, greater pectoral muscle; Gas, gastrocnemius muscle; Sol, soleus muscle; Epi, epididymal fat; Ren, perirenal fat; Mes, mesentery fat.
Table 1. Body, tumor, muscle, fat, and organ weights in nude rats 4 wk after implantation with different 85As2 cell concentrations

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>1 × 10⁶</th>
<th>1 × 10⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>0.00 ± 0.00</td>
<td>5.19 ± 1.54*</td>
<td>11.00 ± 2.31***#</td>
</tr>
<tr>
<td>TV</td>
<td>0.00 ± 0.00</td>
<td>3.77 ± 1.27**</td>
<td>8.75 ± 1.50***##</td>
</tr>
<tr>
<td>BW</td>
<td>259.62 ± 5.84</td>
<td>219.78 ± 8.98***</td>
<td>192.96 ± 8.62***</td>
</tr>
<tr>
<td>% Control</td>
<td>100.0 ± 2.3</td>
<td>84.7 ± 3.5***</td>
<td>74.3 ± 3.2***</td>
</tr>
<tr>
<td>BW – CTW</td>
<td>259.62 ± 5.84</td>
<td>216.01 ± 10.18**</td>
<td>184.20 ± 9.25***##</td>
</tr>
<tr>
<td>% Control</td>
<td>100.0 ± 2.3</td>
<td>83.2 ± 3.9***</td>
<td>71.0 ± 3.6***#</td>
</tr>
<tr>
<td>BW – TW</td>
<td>259.62 ± 5.84</td>
<td>214.59 ± 10.39***</td>
<td>181.96 ± 9.91***</td>
</tr>
<tr>
<td>% Control</td>
<td>100.0 ± 2.3</td>
<td>82.7 ± 4.0***</td>
<td>70.1 ± 3.8***</td>
</tr>
<tr>
<td>Peak BW</td>
<td></td>
<td>226.89 ± 6.06</td>
<td>206.63 ± 7.15</td>
</tr>
<tr>
<td>% Peak BW</td>
<td></td>
<td>94.4 ± 2.7</td>
<td>88.0 ± 3.5*</td>
</tr>
<tr>
<td>Muscle weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater pectoral</td>
<td>2.67 ± 0.11</td>
<td>1.88 ± 0.10***</td>
<td>1.42 ± 0.04***##</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>1.37 ± 0.04</td>
<td>1.17 ± 0.04***</td>
<td>0.97 ± 0.06***##</td>
</tr>
<tr>
<td>Tibialis</td>
<td>0.54 ± 0.02</td>
<td>0.42 ± 0.03***</td>
<td>0.41 ± 0.04**</td>
</tr>
<tr>
<td>Soleus</td>
<td>0.08 ± 0.01</td>
<td>0.07 ± 0.00*</td>
<td>0.07 ± 0.01*</td>
</tr>
<tr>
<td>Fat weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epididymis</td>
<td>3.78 ± 0.19</td>
<td>2.73 ± 0.36*</td>
<td>1.79 ± 0.30***</td>
</tr>
<tr>
<td>Perirrenal</td>
<td>2.58 ± 0.28</td>
<td>1.53 ± 0.45</td>
<td>0.64 ± 0.34**</td>
</tr>
<tr>
<td>Mesentery</td>
<td>1.41 ± 0.13</td>
<td>0.95 ± 0.29</td>
<td>0.40 ± 0.18**</td>
</tr>
<tr>
<td>Organ weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>10.36 ± 0.33</td>
<td>7.69 ± 0.56**</td>
<td>6.69 ± 0.31***</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.63 ± 0.03</td>
<td>0.48 ± 0.02**</td>
<td>0.49 ± 0.03**</td>
</tr>
</tbody>
</table>

Data are presented as the mean ± SE of 5 rats; all weight data are expressed in g. TW, tumor weight; TV, tumor volume; BW, body weight; CTW, converted tumor weight. Rats were implanted subcutaneously with either 85As2 cells (1 × 10⁶ or 1 × 10⁷ cells/site) or saline alone in both flanks. TV was estimated using the following equation: TV (cm³) = major axis (cm) × minor axis (cm) × minor axis (cm) × 1/2, and the TV was converted to tumor weight (mg/mm³). TW and TV are expressed as the total for both sites. Values for bilateral tissues represent the mean of those for the 2 unilateral tissues. BW comparisons between the control group and 85As2 groups at 4 wk after implantation showed the following relationship: % control (%) = BW of each 85As2 group/BW of control group × 100. BW comparisons between peak BW and BW at 4 wk after implantation in each 85As2 group showed the following relationship: %peak body weight (%) = BW (– TW) at 4 wk after implantation/peak BW (– CTW) × 100. Differences between groups were evaluated using Student’s t-test. Differences in TW and TV between the control group and 85As2 groups were evaluated using the Kruskal-Wallis test, followed by a post hoc Dunn’s multiple comparison test. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the control group; #P < 0.05 and ##P < 0.01 vs. the 85As2 cell 1 × 10⁶ cell group; †P < 0.05 vs. each peak BW.

(PVN), arcuate nucleus (ARC), and lateral hypothalamic area (LHA) were identified according to the Paxinos and Watson (48) atlas and confirmed by microscopy. Hybridization was conducted under a Nescom film coverslip (Bando Chemical, Osaka, Japan). [³⁵S]³'-end-labeled deoxyoligonucleotides complementary to transcripts coding for neuropeptide Y (NPY; 5'-GGA GTA TCT GGC CAT GTC CTC TGC TGG CGC GTC-3'), agouti-related protein (AgRP; 5'-CGA CGC GGA GAA CGA GAC TCG CGG TTC TGT GGA TCT AGC ACC TGC GGC-3'), proopiomelanocortin (POMC; 5'-CTT CTC CAG CCG TCT GGC CCA GCA GAA GTG CTC CAT GGA GAA GGA-3'), and corticotropin-releasing hormone (CRH; 5'-CAG TCT CTT CCT GTC GTC AGC TCG AAG AGG GCA ACA ACA AGT CTT CTC TGC ACA ACA-3'), were used as gene-specific probes (28, 30, 31, 43, 62). Total counts of 6 × 10⁶ counts·min⁻¹·slide⁻¹ for NPY, AgRP, POMC, CART, MCH, and CRH and 4 × 10⁵ counts·min⁻¹·slide⁻¹ for orexin were used. Hybridized sections containing the ARC, LHA, and PVN regions were exposed to autoradiography film (Hyperfilm; Amersham, Buckinghamshire, UK) for 4 days for orexin and 7 days for NPY, AgRP, POMC, CART, MCH, and CRH. Autoradiographic images were captured at ×40 magnification and quantified using an MCDI imaging analyzer (Imaging Research, St. Catharines, ON, Canada). The images were captured by a charge-coupled device camera (Dage-MTI, Michigan City, IN). Mean absorbance was measured and compared with simultaneously exposed ¹⁴C microscale samples (Amersham). The standard curve was fitted according to the absorbance of the ¹⁴C microscale on the same film.

Respiratory metabolism. Oxygen consumption was measured with an O₂/CO₂ metabolism-measuring system (MK-5000RQ; Muromachi Kikai, Tokyo, Japan) (33, 45). Each rat was kept unrestrained in a sealed chamber with an airflow of 0.5 l/min at 25°C for 20 h without food. Air was sampled every 3 min, and oxygen consumption (V˙O₂) and carbon dioxide production (V˙CO₂) were calculated (ml·min⁻¹·kg⁻¹). Locomotor activity was measured simultaneously with an attached device. The respiratory quotient (RQ) was calculated by dividing V˙CO₂ by V˙O₂. Metabolic calories (E) were calculated using the system software as follows: E (cal·min⁻¹·kg⁻¹) = (1.07 × RQ + 3.98) × V˙O₂/body weight.

Palliative therapeutic studies using rikkunshito. Rikkunshito was manufactured by Tsumura (Tokyo, Japan) by spray-drying a hot water

Fig. 2. Effects of 85As2 cell implantation at different concentrations on body weight (A), tumor volume (B), food intake (C), water intake (D), FFM (E), FM (F), and TBW (G) in nude rats. Rats were inoculated sc with 85As2 cells (1 × 10⁶ or 1 × 10⁷ cells/site) or saline (control) in both flanks at week 0. Each data point represents the mean ± SE of 5–10 rats (0–2 wk: 10 rats; 3–4 wk: 5 rats). R: food intake comparisons between the MKN45cl85 group and 85As2 groups ≤4 wk after implantation. Rats were inoculated sc with MKN45cl85 or 85As2 cells in both flanks (1 × 10⁶ cells/site) at week 0. Rats inoculated with saline served as a control group. Each data point represents the mean ± SE of 9–10 rats. Differences between groups were evaluated using Student’s t-test or Welch’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control group.

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00116.2013 • www.ajpendo.org
Fig. 4. Plasma levels of α1-acid glycoprotein (AGP; A) and albumin (B) at 2, 4, and 12 wk after 85As2 cell implantation in nude rats. Rats were inoculated subcutaneously (sc) with 85As2 cells (1 × 10^7 cells/site) or saline (control) in both flanks at week 0. Each bar represents the mean ± SE of 5 rats. Differences between groups were evaluated using Student’s t-test or Welch’s t-test. *P < 0.05 and ***P < 0.001 vs. the control group.

Fig. 3. Atrophy and expression of E3 ubiquitin ligases in the gastrocnemius muscle in 85As2-bearing cachectic rats 4 wk after implantation. Nude rats were inoculated subcutaneously with 85As2 cells (1 × 10^7 cells/site) or saline (control) in both flanks at week 0. A: macroscopic observation of the gastrocnemius muscle in a control rat (top muscle in the photo) and cachectic rat (bottom muscle in the photo). B and C: histological observation of the gastrocnemius muscle tissue in a control rat (B) and cachectic rat (C). D and E: expression of the E3 ubiquitin ligases atrogin-1 (D) and muscle RING finger 1 (MuRF-1; E) in gastrocnemius muscle tissue. Each bar represents the mean ± SE of 7–8 rats. Differences between groups were evaluated using the Mann-Whitney U-test. *P < 0.05 and ***P < 0.001 vs. the control group.

E378 NEW CANCER CACHEXIA MODEL

Extract from the following eight crude drugs to form a powdered extract: Atractylodes lanceae rhizoma (4.0 g), Ginseng radix (4.0 g), Pinelliae tuber (4.0 g), Hoelen (4.0 g), Zizyphi fructus (2.0 g), Aurantii nobilis pericarpium (2.0 g), Glycyrrhizae radix (1.0 g), and Zingiberis rhizoma (0.5 g). The powdered rikkunshito extract was obtained from Tsumura. For oral administration into the stomach (0.5 g), the powdered rikkunshito extract was dispersed in distilled water (10 g/ml) over the same period. Non-tumor-bearing rats (control group) were also administered DW over the same period. Tumor-bearing rats were divided into two groups: a treatment (85As2 + rikkunshito) group and a tumor-bearing control (85As2 + DW) group. The treatment group was administered rikkunshito orally twice daily at 1,000 mg·kg⁻¹·day⁻¹ for 7 days (from days 0 to 6). The tumor-bearing control group was administered DW (10 ml/kg) over the same period. Non-tumor-bearing rats (control + DW group) were also administered DW over the same period. Tumor growth was measured weekly. Body weight and food and water intake were measured weekly until day 0 and were measured daily thereafter. Food and water intake data after rikkunshito or DW administration are expressed as the daily, cumulative value from days 0 to 7 or average value from days 2 to 7, and body weight data are expressed as body weight minus converted tumor weight. Body composition was measured on days −14 (before tumor implantation), 0 (before administration), and 6 (after administration). Rats were anesthetized with isoflurane on day 7, and muscle and adipose tissues were immediately dissected and weighed.

Statistical analyses. All data are expressed as means ± SE. Differences between groups were evaluated using the Student’s t-test, paired r-test, Welch’s t-test, Mann-Whitney U-test, one-way analysis of variance followed by a post hoc Dunnett’s multiple comparison test, or Kruskal-Wallis test followed by a post hoc Dunn’s multiple comparison test. A P value of <0.05 was considered significant.

RESULTS

Implantation of MKN45c185 and 85As2 cells induced cancer cachexia in rats. Subcutaneous implantation of either MKN45c185 or 85As2 cells in rats induced progressive tumor growth beginning 1 wk after implantation and affected body weight and composition. Body weight was markedly reduced 2 wk after implantation of MKN45c185 and 85As2 cells compared with controls, and thereafter, the differences gradually increased (Fig. 1, A and B). Additionally, all body composition parameters (FFM, FM, and TBW) were significantly lower in the MKN45c185 and 85As2 groups than in the control group (Fig. 1, C–E). Moreover, all muscle and adipose tissue weights...
were significantly reduced in cachectic rats at 12 wk after implantation compared with control rats (Fig. 1F). Symptoms of cancer cachexia, including weight loss, low FM and FFM, and wasting of muscle and adipose tissues, were more pronounced in the 85As2 group than in the MKN45c185 group.

85As2-induced cancer cachexia rat model characterization. Because the 85As2 model induced more severe cancer cachexia in rats than the MKN45c185 model, the 85As2-induced cancer cachexia model was characterized further. Tumor volume grew progressively in a cell concentration-dependent manner, reaching 1.94 ± 0.06 and 4.38 ± 0.08 cm³ at 4 wk after implantation of 1 × 10⁶ and 1 × 10⁷ 85As2 cells, respectively (Fig. 2B). The body weight of the control group continued to increase during the experiment, whereas the body weight of the 85As2 groups did not. Body weight loss was higher in the 85As2 groups than in the control group beginning

Fig. 5. Effects of tumor removal on body weight (A), food intake (B), water intake (C), FFM (D), FM (E), TBW (F), atrogin-1 (G), MuRF-1 (H), forkhead box O (Foxo; I), insulin-like growth factor-1 (IGF-1; J), grip strength (K), and plasma leukemia inhibitory factor (LIF; L) levels in nude rats implanted with 85As2 cells (1 × 10⁶ cells/each site) or saline (control) in both flanks at week 0. Plasma and the gastrocnemius muscle of the rats were collected 5 wk after implantation. Each data point or bar represents the mean ± SE of 8–9 rats (A–C, K, and L). Each data point or bar represents the mean ± SE of 5 rats (D–J). Differences between groups were evaluated using Student’s t-test or the Mann-Whitney U-test. Differences in plasma LIF levels between groups were evaluated using the Kruskal-Wallis test, followed by post hoc Dunn’s multiple comparison test. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the control group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. the corresponding 85As2 group.
at 2 wk after implantation and became significant at 3 and 2 wk after implantation of 1×10^6 and 1×10^7 cells, respectively (Fig. 2A). The differences in body weight between the 85As2-implanted groups and corresponding control groups were greatest at 4 wk after implantation. The differences in body weight between the 85As2 groups and control group were 70.1–74.3 and 82.7–84.7% regardless of body weight with or without the tumor weight at 4 wk after implantation of 1×10^7 cells, respectively.

Table 2. Plasma levels of human cytokines in the cancer cachexia rat models and cell culture supernatants

<table>
<thead>
<tr>
<th>Time after Inoculation</th>
<th>Cells</th>
<th>IL-1β (pg/ml)</th>
<th>IL-6 (pg/ml)</th>
<th>IL-8 (pg/ml)</th>
<th>TNFα (pg/ml)</th>
<th>LIF (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma (2 wk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
</tr>
<tr>
<td>85As2</td>
<td>1×10^6</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>5.35 ± 3.49</td>
</tr>
<tr>
<td>MKN45cl85</td>
<td>1×10^7</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>12.94 ± 2.02*</td>
</tr>
<tr>
<td>Plasma (4 wk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
</tr>
<tr>
<td>85As2</td>
<td>1×10^6</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>24.38 ± 5.99</td>
</tr>
<tr>
<td>MKN45cl85</td>
<td>1×10^7</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>41.77 ± 11.08*</td>
</tr>
<tr>
<td>Plasma (12 wk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>25.16</td>
</tr>
<tr>
<td>85As2</td>
<td>1×10^7</td>
<td><2.44</td>
<td><2.44</td>
<td>39.88 ± 25.14**</td>
<td><2.44</td>
<td>321.18 ± 42.02**</td>
</tr>
<tr>
<td>MKN45cl85</td>
<td>1×10^7</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td><2.44</td>
<td>75.78 ± 17.51</td>
</tr>
<tr>
<td>Supernatant (24 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85As2</td>
<td>5×10^3</td>
<td>ND</td>
<td>ND</td>
<td>10.36 ± 0.70***</td>
<td>ND</td>
<td>611.74 ± 3.84**</td>
</tr>
<tr>
<td>MKN45cl85</td>
<td>5×10^3</td>
<td>ND</td>
<td>ND</td>
<td>32.14 ± 29.98</td>
<td>ND</td>
<td>416.00 ± 26.71</td>
</tr>
<tr>
<td>Supernatant (48 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85As2</td>
<td>5×10^3</td>
<td>ND</td>
<td>ND</td>
<td>19.02 ± 3.93***</td>
<td>ND</td>
<td>937.29 ± 18.48**</td>
</tr>
<tr>
<td>MKN45cl85</td>
<td>5×10^3</td>
<td>ND</td>
<td>ND</td>
<td>559.98 ± 25.16</td>
<td>ND</td>
<td>724.91 ± 22.50</td>
</tr>
</tbody>
</table>

Cytokine levels in cell culture supernatants are expressed as the mean ± SE of triplicate wells in pg/ml, and plasma cytokine levels are expressed as the mean ± SE (pg/ml) values for 4–5 rats. LIF, leukemia inhibitory factor; ND, not detectable (below the minimum detection limit of the assay). Rats were implanted subcutaneously with MKN45cl85 or 85As2 cells (1×10^6 or 10^7 cells/site) or saline alone in both flanks. Differences in plasma cytokine levels between groups were evaluated using the Kruskal-Wallis test, followed by a post hoc Dunn’s multiple comparison test (*$P < 0.05$ and **$P < 0.01$ vs. the corresponding control group). Supernatants were collected from 24- or 48-h incubation cultures. Differences in the cytokine levels in cell culture supernatants for the groups were evaluated using Student’s t-test (**$P < 0.01$ and ***$P < 0.001$ vs. the corresponding MKN45cl85 group).

Fig. 6. A: mRNA expression of neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus (ARC), corticotropin-releasing hormone (CRH) in the paraventricular nucleus (PVN), and orexin (ORX) and melanin-concentrating hormone (MCH) in the lateral hypothalamic area (LHA) in control and 85As2-induced cachectic rats 4 wk after implantation. Nude rats were inoculated subcutaneously with 85As2 cells (1×10^6 cells/site) or saline (control) in both flanks at week 0. In situ hybridization was measured 4 wk after implantation. Representative autoradiographs of sections hybridized by a 35S-labeled oligodeoxynucleotide probe complementary to mRNA for all the peptides mentioned in A. Signal intensity ranges from high (black bars) to low (open bars). Black bar = 1 mm. B and C: time course changes in body weight (B) and food intake (C). Changes in body weight and food intake were evident at 4 wk after implantation. Each bar or data point represents the mean ± SE of 6 rats. Differences between groups were evaluated using Student’s t-test. *$P < 0.05$, **$P < 0.01$, and ***$P < 0.001$ vs. the control group.
Comparison between peak body weight and body weight 4 wk after implantation showed body weight loss in each cachectic rat (1 × 10⁷ cells, 88.0 ± 3.5%; and 1 × 10⁶ cells, 94.4 ± 2.7%). These comparisons were made using the corresponding individual peak body weight. All body composition parameters (FFM, FM, and TBW) were also substantially lower in the 85As2 groups than in the control groups (Fig. 2, E–G).

Reductions in food and water intake were observed beginning at 1 wk after implantation in the 85As2 groups compared with the corresponding control groups and became significant 2–4 wk later (food intake: 1 × 10⁷ cells, 73.5–78.7%; and 1 × 10⁶ cells, 89.0–90.7%; water intake: 1 × 10⁷ cells, 71.2–80.1%; and 1 × 10⁶ cells, 83.4–88.7%; Fig. 2, C and D). Similarly to the 85As2-induced cachexia model, MKN45cl85-implanted rats also exhibited marked decreases in food intake (Fig. 2H). However, the decrease in food intake was less pronounced in MKN45cl85-implanted rats than in 85As2-implanted rats (MKN45cl85, 1 × 10⁷ cells, 83.8–87.0% compared with the corresponding control groups).

Muscle (greater pectoral, gastrocnemius, tibialis, and soleus), adipose tissue (epididymal, perirenal, and mesentery fat), liver, and spleen weights decreased substantially in a cell concentration-dependent manner at 4 wk after implantation in cachectic rats compared with that in control rats (Table 1). Macroscopic and histological observations confirmed gastrocnemius muscle atrophy in the 85As2 group (1 × 10⁷ cells) at 4 wk after implantation (Fig. 3, A–C). Furthermore, all cells in Fig. 3, B and C (control, n = 51; 85As2, n = 75), were measured, and the cross-sectional area, perimeter, Feret diameter, and minimum Feret diameter were calculated. The cross-sectional area (1,460.4 ± 76.3 vs. 2,023.9 ± 85.2 μm², P <
NEW CANCER CACHEXIA MODEL

Figure A: Food intake (g/day)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure B: Water intake (ml/day)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure C: Cumulative food intake (g)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure D: Cumulative water intake (ml)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure E: Food intake (g/day)
- before administration
- after administration

Figure F: Water intake (ml/day)
- before administration
- after administration

Figure G: Body weight
- Saline
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure H: FFM (g)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure I: TBW (liter)
- Control + distilled water
- 85As2 (1x10^7 cells) + distilled water
- 85As2 (1x10^7 cells) + rikkunshito

Figure J: Weight (g)
- Total Muscle
- Total Fat
Hypothalamic feeding-regulating peptide levels were evaluated using the paired expression levels of not only atrogin-1 (85As2, 321.2%) and Foxo1 (85As2, 683.7%) in rats implanted with 85As2 cells (1 × 10^7 cells; Fig. 7, G and H). \(\Delta V_O_2 \) was higher in 85As2-induced cachetic rats than in control rats 4 wk after implantation (Fig. 7A). Locomotor activity was noticeably lower during the “active” overnight period in cachectic rats than in control rats (Fig. 7, B and D). RQ, \(\Delta V_O_2 \), and metabolic calorie levels were significantly higher in cachectic rats than in control rats during the daytime period, although locomotor activity was not different between the groups during this time period (Fig. 7, C–F).

Cytokine levels. To investigate the underlying causes of cancer cachexia, the plasma concentrations of several proinflammatory cytokines were measured. Human LIF levels were remarkably elevated in a cell concentration- and time-dependent manner in rats implanted with 85As2 cells, whereas the levels of human IL-1β, IL-6, and TNFα were not evaluated in this model at 12 wk (Table 2). Similar results were obtained in MKN45cl85-implemented rats at 12 wk. Additionally, rat IL-1β, IL-6, KC, and TNFα levels were below detection limits, and IFNγ levels were unchanged in both rat models (data not shown). Moreover, human LIF production was observed in cell culture supernatants from both cell lines, although 85As2 cells produced substantially higher amounts of LIF than MKN45cl85 cells (Table 2). Human IL-8 production was also observed in both cell lines. Furthermore, tumor removal reversed the increase in plasma LIF levels in 85As2-bearing cachectic rats (Fig. 5L).

Gene expression of hypothalamic orexigenic/anorexigenic peptides in the 85As2-induced cachexia model. Cachexia symptoms such as body weight loss and anorexia were induced in rats implanted with 85As2 cells (1 × 10^7 cells; Fig. 6, B and C). Hypothalamic feeding-regulating peptide levels were evaluated 4 wk after implantation of 85As2 cells. Orexigenic peptide mRNA levels (NPY and AgRP in the ARC, ORX and MCH in the LHA) were higher in 85As2 cachetic rats than in control rats, whereas anorexigenic peptide mRNA levels (POMC and CART in the ARC, CRH in the PVN) were lower in cachetic rats than in control rats (Fig. 6A).

Respiratory metabolism in the 85As2-induced cachexia model. Cachexia symptoms such as body weight loss and anorexia were induced in rats implanted with 85As2 cells (1 × 10^7 cells; Fig. 7, G and H). \(\Delta V_O_2 \) was higher in 85As2-induced cachetic rats than in control rats 4 wk after implantation (Fig. 7A). Locomotor activity was noticeably lower during the “active” overnight period in cachectic rats than in control rats (Fig. 7, B and D). RQ, \(\Delta V_O_2 \), and metabolic calorie levels were significantly higher in cachectic rats than in control rats during the daytime period, although locomotor activity was not different between the groups during this time period (Fig. 7, C–F).

DISCUSSION

Herein, we established novel stomach cancer cachexia models by implanting nude rats with MKN45cl85 and 85As2 cells, both of which were derived from the human stomach cancer cell line MKN-45. These models enabled us to sequentially evaluate anorexia and body composition changes (low FFM) that correspond to poor QOL in human cancer patients. In addition to anorexia and low FFM, the cachexia models showed significant weight loss, reduced musculature and muscle strength, and abnormal biochemistry (increased inflammatory marker levels and low serum albumin levels), thereby fulfilling the cachexia diagnostic criteria (20). Interestingly, cancer cachexia developed earlier and was more severe in the 85As2-bearing model than in the MKN45cl85-bearing model, indicating that 85As2 cells derived from peritoneal dissemination possessed an enhanced ability to cause cachexia. Indeed, the presence of peritoneal metastasis promotes cachexia and is associated with a poor prognosis and low QOL in patients with advanced-stage stomach cancer. Our 85As2-bearing model may provide a useful tool for further study into the mechanisms and potential treatment of cancer cachexia.

Characterization of the 85As2-induced cachexia rat model showed marked weight loss and reductions in food and water intake
atrogin-1 and animal models (2, 16). Moreover, increased expression of skeletal muscle loss by accelerating muscle protein breakdown ubiquitin ligases atrogin-1 and skeletal muscle proteins are degraded primarily by the ubiquitin- and reduced spleen and liver weights. Because intracellular lature weights, muscle atrophy (e.g., gastrocnemius muscle), tissues, as evidenced by the reduction in all measured muscu-
tations, which was similar to our previous results in a stomach cancer cachexia mouse model (63). In contrast, plasma levels of human LIF, a pleiotropic cytokine belonging to the IL-6 family, were markedly elevated in a cell concentration- and time-dependent manner in rats implanted with 85As2 cells. These findings are in agreement with a previous study showing higher LIF levels in a melanoma SEKI-induced cancer cachexia mouse model (39, 40). Furthermore, we found that tumor removal not only abolished the cachexia symptoms induced by 85As2 cells but also decreased plasma LIF levels to below detectable levels. Therefore, our findings strongly sugges-
ted that LIF is a cachectic factor in the 85As2-bearing cachexia model. To date, genetic polymorphisms of cytokines such as IL-1β, IL-8, and IL-10 have been implicated in cachexia pathogenesis in stomach cancer patients (5, 26, 54). Our study is the first to associate LIF with stomach cancer cachexia. Although clinical evaluation of LIF is currently ongoing, LIF may be a biomarker of pathogenesis and a therapeutic target for peritoneal dissemination and cachexia in stomach cancer.

LIF and its receptor LIF-R, a heterodimeric receptor complex consisting of the ligand-specific LIF-R and signal-transducing gp130 subunit (3), are expressed in POMC neurons in the ARC and have been shown to impact signaling in the hypothalamus. LIF has been shown to inhibit food intake by directly activating POMC neurons in the ARC and stimulating the release of α-melanocyte-stimulating hormone, which in turn transduces anorexigenic signals (27). Importantly, the blood-brain barrier is relatively permissive in the ARC, allowing the neurons to access circulating macromolecules. In fact, Pan et al. (47) showed that peripherally administered LIF reached the brain and spinal cord by crossing the blood-brain barrier. Taken together, these findings suggested that LIF produced by 85As2 and MKN45c185 cell implantation induced cachexia symptoms, including anorexia, in the present study by affecting LIF receptor signaling pathways in POMC neurons in the ARC. Moreover, LIF may contribute to differences in the onset and severity of cachexia in the 85As2 and MKN45c185 cachexia models. However, further study is necessary to deter-
tine the contribution of other cachectic factors to the varying degrees of cancer cachexia in these models.

In the present study, hypothalamic levels of orexigenic peptide mRNAs (NPY and AgRP in the ARC, ORX and MCH in the LHA) were increased in the 85As2-induced cachexia model, whereas the levels of anorexigenic peptide mRNAs (POMC and CART in the ARC, CRH in the PVN) were decreased. Previous studies have shown that hypothalamic NPY release is reduced and that the feeding response to hypothalamic injection of NPY is attenuated in anorectic tumor-bearing rats despite increased hypothalamic NPY mRNA expression (9–12, 38). Moreover, proinflammatory signals (e.g., IL-1β) have been shown to decrease AgRP secretion but increase AgRP gene transcription (50). Thus, despite increases in hypothalamic NPY and AgRP mRNA expression, the anorexia induced in our model may involve impairment of NPY and AgRP release or feeding response to NPY. Interestingly, our previous study using a cisplatin-induced cachexia rat model yielded contrasting results to those of the 85As2 model, although both models exhibited decreased food intake. In the cisplatin-induced cachexia model, hypothalamic orexigenic peptide mRNA levels decreased and anorexigenic peptide mRNA levels increased (65). Cisplatin has been shown to reduce the secretion of ghrelin that activates NPY neurons,
whereas it inhibits POMC and CART expression in the ARC (34, 57). Reduced ghrelin secretion may decrease NPY mRNA levels and increase POMC and CART mRNA levels in the ARC. These findings indicated that distinct underlying mechanisms may induce cachexia-associated anorexia development in different cachexia models.

In addition to body weight loss and anorexia, patients with cancer cachexia also exhibit a reduction in physical activity corresponding to daytime activities (22, 61). Similarly, locomotor activity in the “active period” or dark phase was substantially lower in 85As2-induced cachetic rats than in control rats, whereas locomotor activity was not different between these groups during the daytime period. Reduced activity during the dark phase, but not the light phase, in cachetic rats has also been observed in other cachexia models (41, 59). Because VO2, RQ, and metabolic calorie levels were significantly higher in cachetic rats, whereas locomotor activity was not different between these groups during the daytime period. Reduced activity during the dark phase, but not the light phase, in cachetic rats has also been observed in other cachexia models (41, 59).

Body weight maintenance is the most important end point of any treatment for cachexia-associated anorexia. Rikkunshito therapy has been shown to be an effective anorexia treatment in several animal models (50, 57); therefore, we evaluated the effect of rikkunshito on 85As2-induced cachexia symptoms. Rikkunshito substantially ameliorated cancer cachexia symptoms, including anorexia, weight loss, decreased water intake, and reductions in FFM, TBW, and muscle stature in the 85As2-induced cancer cachexia rat model; however, rikkunshito did not reduce tumor growth or plasma LIF levels. These findings indicated that the anticachectic effects of rikkunshito are not related to tumor regression or LIF levels. Rikkunshito has been shown to increase the secretion of ghrelin, an orexigenic hormone (57), and also to increase ghrelin receptor (GHSR) signaling efficacy (24). GHSR is expressed in the ARC and PVN of the hypothalamus, and ligand binding stimulates NPY/AgRP neurons, thereby transducing orexigenic signals to increase food intake. Thus, rikkunshito may ameliorate anorexia by activating GHSR-NPY/AgRP orexigenic signaling in the ARC and PVN. In fact, our previous study demonstrated that rikkunshito ameliorated cisplatin-induced anorexia in rats and reversed the cisplatin-induced decrease in hypothalamic orexigenic peptide mRNA levels (NPY in ARC) and increase in anorexigenic peptide mRNA levels (POMC and CART in the ARC) (65). Because anorexia induced by cancer cachexia and cisplatin may involve different mechanisms, further study is required to clarify the mechanisms by which rikkunshito ameliorates cancer cachexia-induced anorexia.

In conclusion, we established novel stomach cancer cachexia rat models by implanting nude rats with MKN45cI85 and 85As2 cells, both of which were derived from the human stomach cancer cell line MKN-45. The 85As2-induced cancer cachexia model, which was generated using peritoneal dissemination-derived 85As2 cells, induced earlier and more severe cachexia than the MKN45cI85 model, which may have been caused by differences in LIF production. The 85As2 model allowed for the early evaluation of cancer cachexia parameters associated with poor patient QOL and metabolic disturbances, such as anorexia and body weight loss (including low FFM). Our findings also indicate that rikkunshito may improve QOL in patients with stomach cancer cachexia. The 85As2 model should provide a useful tool for further study of cancer cachexia pathogenesis and treatment.

ACKNOWLEDGMENTS

We thank our colleagues in our laboratory for their technical assistance and helpful comments.

GRANTS

This work was supported in part by a Grant-in-Aid for the Third-TERM Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour, and Welfare, Japan; a Grant-in-Aid for Scientific Research (C) from Ministry of Education, Culture, Sports, Science, and Technology, Japan; the National Cancer Center Research and Development Fund (23-A-2, 23-A-29, 23-A-38); the Foundation for Promotion of Cancer Research in Japan; and a grant from Tsumura and Co. (Tokyo, Japan).

DISCLOSURES

Y. Uezono received grant support from Tsumura & Co. K. Terawaki and Y. Kase are employed by Tsumura & Co. Y. Sawada, Y. Kase, H. Hashimoto, M. Yoshimura, M. Suzuki, K. Miyano, Y. Sudo, S. Shiraiishi, Y. Higami, K. Yanagihara, and Y. Ueta have no conflicts of interest to disclose.

AUTHOR CONTRIBUTIONS

REFERENCES

22. Enriori PJ, Bowe DD, Batra AK, Levasseur PR, Grossberg AJ, Scarlett JM, Zhu X, Enriori PJ, Bowe DD, Batra AK, Levasseur PR, Grant WF, Meguid MM, Cowley MA, Marks DL. Regulation of agouti-related protein messenger ribonucleic acid transcription and peptide

