Impaired glucose tolerance in low-carbohydrate diet: maybe only a physiological state

Renan de Oliveira Caminhotto and Fabio Bessa Lima
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

Submitted 18 October 2013; accepted in final form 22 October 2013

TO THE EDITOR: in the recent work of Bielohuby et al. (1) published in this journal, the authors discussed the hypothesis that the restriction of carbohydrates, substituted by the high consumption of fats, induces a state of glucose intolerance and insulin resistance in rats, which was demonstrated through diverse methodologies, including the hyperinsulinemic euglycemic clamps. It was further shown that these effects are independent of the visceral adipose mass and caloric consumption.

Within this perspective, some considerations become interesting. The metabolic state induced by the restriction of carbohydrates in ketogenic diets is similar in many points to prolonged fasting, in which the metabolic flux is altered, favoring the fatty acids and ketone bodies as a source of energy and decreasing the need for glucose. This decreased need for glucose is especially useful since it preserves the muscle mass that could otherwise be “cannibalized” by proteolytic processes that would overcome to provide substrates for hepatic gluconeogenesis (2, 10). In this context, the intense oxidation of fatty acids decreases the glycolysis, glucose uptake, and oxidation, a process described previously by Randle et al. (6a).

The final products of fatty acids and ketone body oxidation (NADH and acetyl-CoA) and the increase in intracellular cyclic AMP induced by hormones inhibit the pyruvate dehydrogenase complex, the main determinant of the rate of glucose utilization as an energy source (7, 8). For that reason, it should be common in clinical practice that patients submitted to oral glucose tolerance tests not be under severe carbohydrate restriction, since this could alter the response to the glucose overload. Thus, we suggest that the results from Bielohuby et al. (1) can be interpreted as a unique situation of the hydroxycarboxylic acid receptor 2 (6).

The authors declare they have no conflicts of interest, financial or otherwise, to disclose.

AUTHOR CONTRIBUTIONS
R.d.O.C contributed to the conception and design of the research; R.d.O.C. and F.B.L. edited and revised the manuscript; R.d.O.C. and F.B.L. approved the final version of the manuscript.

REFERENCES