Temporal changes in tissue 1α,25-dihydroxyvitamin D₃, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)₂D₃ treatment in mice

Edwin C. Y. Chow,¹ Holly P. Quach,¹ Reinhold Vieth,² and K. Sandy Pang¹

¹Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; and ²Departments of Nutritional Sciences and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Submitted 1 October 2012; accepted in final form 11 March 2013

Chow EC, Quach HP, Vieth R, Pang KS. Temporal changes in tissue 1α,25-dihydroxyvitamin D₃, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)₂D₃ treatment in mice. Am J Physiol Endocrinol Metab 304: E977–E989, 2013. First published March 12, 2013; doi:10.1152/ajpendo.00489.2012.—The vitamin D receptor (VDR) maintains a balance of plasma calcium and 1α,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], its natural active ligand, by directly regulating the calcium ion channel (TRPV6) and degradation enzyme (CYP24A1), and indirectly regulating the parathyroid hormone (PTH) for feedback regulation of the synthetic enzyme CYP27B1. Studies that examined the intricate relationships between plasma and tissue 1,25(OH)₂D₃ levels and changes in VDR target genes and plasma calcium and PTH are virtually nonexistent. In this study, we investigated temporal correlations between tissue 1,25(OH)₂D₃ concentrations and VDR target genes in ileum and kidney and plasma calcium and PTH concentrations in response to 1,25(OH)₂D₃ treatment in mice (2.5 μg/kg ip, singly or q2d × 4). After a single ip dose, plasma 1,25(OH)₂D₃ peaked at ~0.5 h and then decayed biexponentially, falling below basal levels after 24 h and then returning to baseline after 8 days. Upon repetitive ip dosing, plasma, ileal, renal, and bone 1,25(OH)₂D₃ concentrations rose and decayed in unison. Temporal profiles showed increased expression of ileal Cyp24a1 and renal Cyp24a1, Mdr1/P-gp, and VDR but decreased renal Cyp27b1 mRNA after a time delay in VDR activation. Increased plasma calcium and attenuated PTH levels and increased ileal and renal Trpv6 expression paralleled the changes in tissue 1,25(OH)₂D₃ concentrations. Gene changes in the kidney were more sustained than those in intestine, but the magnitudes of change for Cyp24a1 and Trpv6 were lower than those in intestine. The data revealed that 1,25(OH)₂D₃ equilibrates with tissues rapidly, and VDR target genes respond quickly to exogenously administered 1,25(OH)₂D₃.

Address for reprint requests and other correspondence: K. S. Pang, Faculty of Pharmacy, Univ. of Toronto, 144 College St., Toronto, ON, Canada M5S 3M2 (e-mail: ks.pang@utoronto.ca).

http://www.ajpendo.org 0193-1849/13 Copyright © 2013 the American Physiological Society
(14, 22). Our laboratory has shown that VDR transactivates P-gp in brain microvessel endothelia (18) in vitro and P-gp in murine kidney and brain but not ileum and liver in vivo, leading to hastened efflux of digoxin in the brain and kidney (11).

Clinically, the concentration of 25(OH)D3 in plasma (nM range) is used as the biomarker for vitamin D status, although this value does not reflect the concentration of its active metabolite, 1,25(OH)2D3 (pM range) formed via CYP27B1, the rate-limiting enzyme (19, 53). Thus, there is the need to define precisely the pharmacological effects and interplay between 1,25(OH)2D3 and the respective VDR target genes. A temporal study was thus undertaken to examine tissue levels of small doses of 1,25(OH)2D3 (2.5 pmol) ip q2d/862 (0.5 g/kg or 38 g/kg), furnished a similar clearance and exposure with published reports, with doses ranging from 0.1 to 5 g/kg ip q2d (52). We aimed to test the hypothesis that 1,25(OH)2D3 enters and equilibrates with tissues readily and that effects of VDR-responsive genes are delayed after entry of 1,25(OH)2D3 in the tissue, since signal transduction is a multistep process involving multiple organs and feedback mechanisms.

METHODS

Materials. 1,25(OH)2D3 in powder form was purchased from Sigma-Aldrich Canada (Mississauga, ON, Canada). Antibodies to Cyp24 (H-87) and villin (C-19) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA), anti-Gapdh (cat. no. ab8245) and anti-Trpv6 (cat. no. ab63084) from Abcam (Cambridge, MA), and P-gp from ID Labs (London, ON, Canada). All other reagents were purchased from Sigma-Aldrich Canada (Mississauga, ON, Canada). Antibodies to Cyp24 (H-87) and villin (C-19) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA), anti-Gapdh (cat. no. ab8245) and anti-Trpv6 (cat. no. ab63084) from Abcam (Cambridge, MA), and P-gp from ID Labs (London, ON, Canada). All other reagents were purchased from Sigma-Aldrich Canada (Mississauga, ON, Canada) and Fisher Scientific (Mississauga, ON, Canada). The enzyme immunoassay (EIA) kit (cat. no. AC-62F1) for 1,25(OH)2D3 measurement was manufactured by Immunodiagnostics Systems (IDS; Scottsdale, AZ) and purchased from Inter Medico (Markham, ON, Canada). The mouse PTH 1–84 ELISA kit, manufactured by ImmunoDiagnostics International (San Clemente, CA), was obtained via Joldon Diagnostics (Burlington, ON, Canada).

Pharmacokinetic study of 1,25(OH)2D3 in mice. Anhydrous ethanol was used to dissolve the 1,25(OH)2D3 powder, and the resulting concentration was measured spectrophotometrically at 265 nm (UV-1700, Shimadzu Scientific Instruments) before dilution with sterile corn oil. For in vivo pharmacokinetic studies in male, C57BL/6 mice (8 wk old), doses of either 0 or 2.5 μg/kg (or 0.05 μg/mouse or 120 pmol) 1,25(OH)2D3, dissolved in sterile corn oil (5 μl/g), were given ip on days 0, 2, 4, and 8 at 9 AM. The dose was based on a series of published reports, with doses ranging from 0.1 to 5 μg/mouse or 0.25 to 5 μg/kg for ip or oral administration, daily or every other day in mice (1, 2, 7, 39, 42, 47, 55). In humans, doses of 1,25(OH)2D3 (0.5 μg/kg or 38 μg) furnished a similar clearance and exposure with minimal toxicity when used intermittently (8, 38). Moreover, preliminary studies had shown that the chosen dosing regimen in mice elicited the desired pharmacological effect with only minor elevation of plasma calcium.

One mouse was euthanized at each blood sampling point for the treatment groups, and tissues were harvested at 0, 0.08, 0.25, 0.5, 1, 3, 6, 9, 12, 24, 48, 96, 192, and 360 h after the first dose on day 0, and at 0.5, 1, 3, 6, 9, 12, 24, and 48 h, after subsequent doses [in accordance with animal protocols approved by the University of Toronto (ON, Canada)]. For the control group (treated with corn oil only), however, sampling was conducted at 0, 3, 6, and 12 h on day 0, and at 0 h on days 2, 4, 6, 8, and 14. The mouse was rendered unconscious in a carbon dioxide chamber before blood collection by cardiac puncture using a 1-ml syringe-23G 3/4 inch needle set that was primed with heparin (1,000 IU/ml). Plasma was obtained by centrifugation of blood at 3,000 rpm for 10 min. After flushing of ice-cold saline through the lower vena cava for the removal of blood, the kidneys were harvested, weighed, reduced to small pieces, snap-frozen in liquid nitrogen, and stored at −80°C for future analyses (11). The small intestinal segments: the duodenum (spanning from the pyloric ring to the ligament of Treitz), proximal jejunum (6 cm after the ligament of Treitz), and ileum (6 cm proximal to the ileocecal junction) were removed as described (12). After flushing of the segments with cold 1 mM phenylmethylsulfonyl fluoride (PMSF)-saline solution, the segments were everted and scraped, and the scrappings were snap-frozen in liquid nitrogen and stored at −80°C. The colon was also removed, flushed with cold 1 mM PMSF saline solution, blot-dried, snap-frozen in liquid nitrogen and stored at −80°C. For isolation of the femur (bone), the skin, muscle, tendon, and fat around the leg were removed and/or scraped off with a razor blade and then snap-frozen in liquid nitrogen and stored at −80°C until analyses.

Plasma calcium and phosphorus analyses and PTH assay. Calcium and phosphorus measurements in plasma were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES; Optima 3000 DV, PerkinElmer) as previously described (13). Plasma was diluted 350-fold with 1% nitric acid before each measurement. Calcium was measured at 317.9 and 315.9 nm and phosphorus at 213.6 and 214.9 nm. PTH levels in 20 μl of plasma were assayed by ELISA according to the manufacturer’s protocol.

Tissue 1,25(OH)2D3 extraction and 1,25(OH)2D3 EIA for plasma and tissue samples. The tissue extraction procedure for lipids was similar to that of Bligh and Dyer (6), with modifications described by Wagner et al. (52). Weighed kidney and scraped intestinal enterocyte samples were added to double-distilled water (wt/vol) to a final volume of 1 ml. The sample was homogenized with 3.75 ml of methylene chloride and methanol (1:2 vol/vol) using the Ultra-turrax T25 homogenizer (Janke & Kunkel, Staufen, Germany). The weighed femur was added to double-distilled water (wt/vol up to 1 ml) and 3.75 ml of a mixture of methylene chloride and methanol (1:2 vol/vol) before the bone mixture was crushed using a mortar and pestle to obtain a homogenate. The final homogenate was mixed with 1.25 ml of methylene chloride and vortexed for 1 min, and then 1.25 ml double-distilled water was added and further mixed for another minute before centrifugation at 3,000 rpm for 20 min at room temperature. The methylene chloride (bottom phase) was collected using a glass Pasteur pipette. Extraction of the homogenate was repeated upon addition of 1.25 ml of methylene chloride. The harvested methylene chloride extract was pooled, dried under nitrogen gas, and reconstituted with 0.3 ml of charcoal-stripped human serum (52). The concentration of 1,25(OH)2D3 in mouse plasma or tissue was determined using the 1,25(OH)2D3 EIA kit following the manufacturer’s protocol. Plasma and tissue samples, when out of the calibration range, were diluted with charcoal-stripped human serum before analysis. Delipidated solutions of tissue samples were spun at 12,000 g for 10 min through a 0.2 μm Nanosep MF Centrifugal Device (Pall Life Sciences, Ville St. Laurent, QC) before addition for the immunocapsules for EIA.

Preparation of subcellular protein fractions of kidney and intestinal tissues. For preparation of the crude membrane fraction for the assay of Cyp24 or P-gp protein, kidney, colon tissue, or scraped enterocytes were homogenized in the crude membrane homogenizing buffer (250 mM sucrose, 10 mM HEPES, and 10 mM Trizma base, pH 7.4) containing 1% protease inhibitor cocktail (11). This homogenate was used for Western blotting to measure total VDR protein expression. The homogenate was then centrifuged at 3,000 g for 10 min at 4°C, and the resulting pellet containing the mitochondrial fraction was resuspended in a buffer (in mM: 60 KCl, 15 NaCl, 5 MgCl2·6H2O, 0.1 EGTA, 300 sucrose, 0.5 DTT, 0.1 PMSF, 300 sucrose, and 15 Trizma HCL pH 7.4) containing 1% protease inhibitor cocktail for Western blotting to measure Cyp24 protein expression. The supernatant was spun at 20,000 g for 60 min at 4°C, and the resulting pellet was resuspended in the resuspension buffer, as previ-
plasma binding of 1,25(OH)2D3 relative to those in tissues. The unity tissue partitioning ratio may be explained by the high plasma concentration ratios were 0.35, 0.4, and 0.17 for the kidney, ileum, and bone, respectively (Fig. 1A). The plasma 1,25(OH)2D3 levels (Mann-Whitney U-test). After a single ip dose of 50 ng/mouse (120 pmol/mouse or 2.5 μg/kg), 1,25(OH)2D3 was rapidly absorbed (tmax or time for maximum concentration of ≤0.5 h), yielding a peak plasma concentration (Cmax) of 44 nM, followed by an apparent, biexponential decay profile (Fig. 2A) with a half-life of ~6.86 h (Table 2). Distinctively, the plasma concentration of 1,25(OH)2D3 fell below the baseline by the end of day 0, reached a nadir by day 4, and returned to baseline levels by day 8 (Fig. 2A). Subsequent to ip dosing of 1,25(OH)2D3, tissue levels in the kidney, ileum, and bone peaked at similar times [6, 4.5, and 0.065 nmol/kg (or pmol/g) tissue, respectively] and decayed in parallel fashion to that of plasma (Fig. 2A).

Following multiple 1,25(OH)2D3 ip dosing, patterns of decay for plasma 1,25(OH)2D3 were similar after each injection, wherein the 1,25(OH)2D3 concentration peaked (averages of 44, 22, 43, and 29 nM) between 0.5 and 1 h after each of the injections given. Levels again fell below the basal level by the end of 24 h postinjection (Fig. 2B). The plasma 1,25(OH)2D3 concentration before the next injection at the nadir was much lower than the previous injection at the peak.

RESULTS

Similar plasma and tissue (ileum, kidney, and bone) decay of 1,25(OH)2D3 after single and multiple dosing of 1,25(OH)2D3 to mice. The baseline plasma concentration of 1,25(OH)2D3 for vehicle-treated C57BL/6 mouse, estimated as the mean of the determinations for the experimental duration, was 212 ± 29 pM (fmol/ml), a value similar to the endogenous plasma concentration of 1,25(OH)2D3 in the rat (51) but higher than that in humans (8, 53). Basal levels of 1,25(OH)2D3 in the kidney (70.5 ± 10.4 pmol/kg tissue), intestine (93.5 ± 7.2 pmol/kg tissue), and bone (36.5 ± 3.8 pmol/kg tissue) were significantly lower than those in plasma (Fig. 1A); the tissue/plasma concentration ratios were 0.35, 0.4, and 0.17 for the kidney, ileum, and bone, respectively (Fig. 1B). The less-than-unity tissue partitioning ratio may be explained by the high plasma binding of 1,25(OH)2D3 relative to those in tissues.

Table 1. Mouse primer sets for quantitative real-time PCR

<table>
<thead>
<tr>
<th>GenBank Number</th>
<th>Forward (5’→3’ Sequence)</th>
<th>Reverse (5’→3’ Sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp24a1</td>
<td>NM_009996</td>
<td>CTCCCCCATGGACAAAGGCG</td>
</tr>
<tr>
<td>Mdr1</td>
<td>NM_011076</td>
<td>TAACAGCGCGGAGCGGCAGCTG</td>
</tr>
<tr>
<td>Trpv6</td>
<td>NM_022413</td>
<td>ATGAGTGGGCTGCGACACT</td>
</tr>
<tr>
<td>VDR</td>
<td>NM_009504</td>
<td>GACTGCTGCTGGAAGCGGAGA</td>
</tr>
<tr>
<td>Cyclophilin</td>
<td>X58990</td>
<td>GGAGATGCGACAGGAGGAA</td>
</tr>
<tr>
<td>Villin</td>
<td>NM_009509</td>
<td>TCTCTGGATATCAGAAGGCCC</td>
</tr>
</tbody>
</table>

Cyp24a1, degradation enzyme; Mdr1, multidrug resistance protein-1; Trpv6, calcium ion channel; VDR, vitamin D receptor.

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00489.2012 • www.ajpendo.org
Fig. 2. Plasma and tissue 1,25(OH)_{2}D_{3} (ileum, kidney, and bone) concentration-time profiles from a single dose (A) or multiple doses (B) (days 0, 2, 4, and 6) of 2.5 μg/kg ip 1,25(OH)_{2}D_{3} q2d × 4 to mice. Data for vehicle-treated mice (control) were averaged and are denoted as open circles interconnected by solid line (n = 2–4). For treated mice, individual 1,25(OH)_{2}D_{3} datum is shown (filled circle, one mouse per sample); averaged values are joined by dashed line (n = 2–4).
Ileal Trpv6

Ileal Cyp24a1

Ileal Trpv6

(52x81) or multiple doses (of VDR (B)) after a single dose (C), Cyp24a1 (CA) of 1,25(OH)2D3. Data at middle), and Trpv6 (C) in bone, respectively, between 0.5 and 3 h after each of the four tissue in ileum, and 0.065, 0.505, 7.65, and 1.8 nmol/kg tissue

5.6 nmol/kg tissue in kidney, 4.5, 1.9, 1.9, and 2.8 nmol/kg

tissue in ileum, reaching a peak concentration of 6.1, 1.8, 5.0, and 1.8 nmol/kg tissue in bone, respectively, between 0.5 and 3 h after each of the four injections. These data confirm that 1,25(OH)2D3 is able to equilibrate readily between plasma and tissue.

Multiple dosing of 1,25(OH)2D3 resulted in a terminal or beta half-life of ~6.3 to 7.5 h (Fig. 2B), and no trend was discernable upon repeated dosing (Table 2). Overall, the decay pattern of 1,25(OH)2D3, based on the total 1,25(OH)2D3 (exogenous + basal) concentration after the administered 1,25(OH)2D3, and the exposure (AUC0–48) were similar after each injection (Fig. 2B, Table 2). There was little change in the pharmacokinetics of 1,25(OH)2D3 upon repeated dosing, since change in the enzyme for catabolism, Cyp24a1, was maximal after a single dose (see results below for intestine and kidney). The half-life is similar to that observed from other ip studies in the mouse (7.6 h) (37).

Intestinal distribution and effects of 1,25(OH)2D3 on intestinal and colon VDR, Cyp24a1, and Trpv6 mRNA expression. The distribution of basal VDR mRNA expression was found to be higher for the duodenum than jejunum (50% of duodenum) and ileum (46% of duodenum) but was highest in the colon (1.5-fold of duodenum; Fig. 3A, left). Basal Cyp24a1 mRNA

lower than that of the basal level, and the same pattern persisted throughout the dosing regimen. The renal, ileal, and bone 1,25(OH)2D3 tissue concentrations rose in unison to those in plasma, reaching a peak concentration of 6.1, 1.8, 5.0, and 3.6 nmol/kg tissue in kidney, 4.5, 1.9, 1.9, and 2.8 nmol/kg tissue in ileum, and 0.065, 0.505, 7.65, and 1.8 nmol/kg tissue in bone, respectively, between 0.5 and 3 h after each of the four

Terminal decay constant (β) was estimated from the negative slope of ln(concentration) vs. time data from averaged data between 12 and 48 h after each injection. Terminal half-life (t1/2,β) was calculated as 0.693/β. Area under the curve [AUC0–48], between 0 and 48 h was estimated by the trapezoidal rule.

<table>
<thead>
<tr>
<th>Dose, pmol</th>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Dose 3</th>
<th>Dose 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔU0–48b, nM h</td>
<td>179</td>
<td>131</td>
<td>170</td>
<td>117</td>
</tr>
</tbody>
</table>

Table 2. Noncompartmental estimates for 1,25(OH)2D3, after repeated doses of 2.5 μg/kg q2d × 4 ip to mice

Fig. 3. Intestinal distribution of mRNA and effect of 1,25(OH)2D3 (left) on vitamin D receptor (VDR; A), degradation enzyme (Cyp24a1; B), and calcium ion channel (Trpv6; C) mRNA expression in duodenum, jejunum, ileum, and colon at 3 h post-2.5 μg/kg ip 1,25(OH)2D3 injection; temporal changes for ileal mRNA of VDR (A), Cyp24a1 (B), and Trpv6 (C) after a single dose (middle) or multiple doses (right) of 1,25(OH)2D3. Data at left represent mean ± SE (n = 3 or 4). In left, † P < 0.05 between basal duodenal control vs. basal control of other intestinal segments; * P < 0.05, basal control vs. 1,25(OH)2D3-treated group (Mann-Whitney U-test). In middle and right, data for vehicle-treated mice (control) were averaged and are denoted as open circles interconnected by solid line (n = 2–4). For treated mice, individual 1,25(OH)2D3 datum is shown (filled circle); averaged values are joined by dashed line (n = 2–4).
Fig. 4. Temporal changes in renal mRNA expression of VDR (A), Cyp24a1 (B), Trpv6 (C), and the synthetic enzyme, Cyp27b1, (D) after a single dose or multiple doses of 1,25(OH)₂D₃ to mice. Data for vehicle-treated mice (control) were averaged and are denoted as open circles interconnected by solid line (n = 2–4). For treated mice, individual 1,25(OH)₂D₃ datum is shown (filled circle); averaged values are joined by dashed line (n = 2–4).
expression was evenly distributed in the small intestine but was highest in colon (42-fold of duodenum; Fig. 3B, left). The basal mRNA expression of Trpv6 was highest in the duodenum, followed by the colon (46% of duodenum), and was negligible in the jejunum and ileum (<1%; Fig. 3C, left). At 3 h post-1,25(OH)2D3 injection, there was no major change in VDR mRNA expression for all intestinal segments and the colon (Fig. 3A, left). By contrast, Cyp24a1 and Trpv6 mRNA expressions were elevated >900-fold and >7-fold in the duodenal and ileal segments, respectively, although not for the jejunum due to sample variation (Figs. 3, B and C, left). The lack of Cyp24a1 mRNA induction and small Trpv6 mRNA change in colon (Figs. 3, B and C, left) with 1,25(OH)2D3 treatment agrees with the possibility that very low amounts of 1,25(OH)2D3 are available to enter into colon due to the route of administration (ip).

Focusing on the ileum, where induction of Asbt (an important VDR target gene to transport bile acids) was previously found to occur in the rat (10, 12), single or repetitive treatment of 1,25(OH)2D3 to mice elicited only minimal changes in ileal VDR mRNA expression (Fig. 3A, middle and right), though the temporal ileal 1,25(OH)2D3 concentrations rose in unison to that in plasma and remained mostly above basal levels during each injection interval (Fig. 2). By contrast, ileal Cyp24a1 mRNA was induced significantly between 3 and 9 h after dosing (Fig. 3B, middle and right), with patterns similar to the temporal changes of 1,25(OH)2D3 in ileum (Fig. 2). The induction of Cyp24a1 mRNA was dramatically increased (>500-fold) after the first dose (Fig. 3B, middle), but the inductions were slightly lessened (300- to 400-fold) for the 2nd, 3rd, and 4th doses, with mRNA levels rapidly returning to baseline at 24 h after dosing (Fig. 3B, right). A single administration of 1,25(OH)2D3 resulted in a 30-fold maximal increase in ileal Trpv6 mRNA at 9 h (Fig. 3C, middle). However, multiple dosing of 1,25(OH)2D3 greatly magnified the increase of ileal Trpv6 to 200- to 600-fold, with higher changes observed at the 3rd and 4th doses (Fig. 3C, middle and right).

Induction of renal VDR, Cyp24a1, and Trpv6 and down-regulation of Cyp27b1 mRNA were time and concentration dependent. Unlike the modest change of VDR mRNA observed for the intestine, renal VDR mRNA rose 2-fold between 3 and 12 h after the single 1,25(OH)2D3 dose, and this increase was sustained for the entire week before levels returned to baseline. With multiple dosing, renal VDR mRNA levels for subsequent doses were further increased to 2.5- then 4-fold over basal levels (Fig. 4A). After a single 1,25(OH)2D3 dose, renal Cyp24a1 mRNA expression was increased 77-fold and peaked at ~9 h, and levels remained high and above baseline for 8 days, whereas multiple dosing of 1,25(OH)2D3 induced and maintained Cyp24a1 mRNA over 40-fold above basal levels (Fig. 4B). Injection of a single 1,25(OH)2D3 dose resulted in a 5-fold maximal increase in renal Trpv6 mRNA at 9 h, whereas multiple dosing greatly magnified the increase of renal Trpv6, with higher changes observed for Trpv6 mRNA at the 3rd and 4th doses of ~10- to 12-fold above basal levels (Fig. 4C). For renal Cyp27b1 mRNA, there was an immediate rise above basal level at 0.5 h following the first injection, but this change was followed by a rapid decrease to 34% of basal level at 3 h (Fig. 4D); these levels were maintained below basal levels (8–30%) before returning back to baseline on the 8th day, and the average renal Cyp27b1 mRNA level was ~3–30% of basals levels during repetitive dosing (Fig. 4D), suggesting that endogenous 1,25(OH)2D3 synthesis was likely reduced.

Induction of renal Mdr1 mRNA and P-gp protein by 1,25(OH)2D3. Similarly, renal Mdr1 mRNA showed a relatively small increase (1.5- to 2-fold) before returning back to basal level 6 h after the single administration (Fig. 5A). However, upon repetitive dosing, a disproportionate and sustained increase (>10-fold) was observed (Fig. 5B). Renal P-gp protein levels resulting from 1,25(OH)2D3 repetitive treatment rose on average 5-fold above basal levels (Fig. 5C).

Temporal changes in intestinal and renal VDR, Cyp24, and Trpv6 protein expression vs. plasma calcium and PTH levels in single and multiple doses of 1,25(OH)2D3 in mice. Basal protein level of VDR was higher in the duodenum than in ileum (30% of duodenum) but was highest in colon (4-fold; Fig. 6A), whereas VDR protein was similar between the duodenum and kidney (Fig. 6B). Changes in protein expression of VDR were different compared with its mRNA expression (Fig. 3A). When examined, VDR protein in the various segments showed differential temporal changes with 1,25(OH)2D3 treatment for the duodenum, ileum, and colon. VDR protein in duodenum was elevated after the 2nd and 3rd 1,25(OH)2D3 injections, whereas VDR protein level in the colon was increased after the 3rd and 4th injections (Fig. 6C). There were higher protein changes but a lack of change in ileal VDR.

![Fig. 5](http://ajpendo.physiology.org/)

Fig. 5. Temporal changes in renal mRNA and protein expression of multidrug resistance protein-1 or P-glycoprotein (Mdr1/P-gp; 170 kDa) from a single dose (A) or multiple doses (B and C) of 1,25(OH)2D3 to mice. Data for vehicle-treated mice (control) were averaged and are denoted as open circles joined by solid line (n = 2–4). For treated mice, individual 1,25(OH)2D3 datum is shown (filled circle); averaged values are joined by dashed line (n = 2–4).
mRNA with treatment (Fig. 3A), and this could be explained by the action of 1,25(OH)2D3 in increasing the half-life of VDR protein (31). Renal VDR protein, similar to VDR mRNA, rose rapidly after the 1st dose, and was sustained for the 2nd and 4th doses (Fig. 6C). Furthermore, multiple administration of 1,25(OH)2D3 increased Cyp24 protein in ileum steadily at 1.5-fold above basal level (Fig. 7A), whereas the changes for renal Cyp24 protein were considerably higher (10-fold on average) than in ileum (Fig. 7B).

We then examined basal levels of Trpv6 protein in the duodenum, ileum, and colon and found the rank order of duodenum > ileum (72% of duodenum) > colon (25% of duodenum) (Fig. 8A). The basal level of Trpv6 protein of the kidney was only 43% of that in duodenum (Fig. 8B). With 1,25(OH)2D3 treatment, Trpv6 protein levels were increased 1.5-fold on average throughout the treatment period for the duodenum and ileum after the 3rd and 4th doses, whereas levels in the colon were increased after the 4th dose (Fig. 8C). These changes in

![Graph](image-url)
protein are consistent with a high Trpv6 mRNA induction in ileum at the same period (Fig. 3C).

Furthermore, levels of plasma calcium were correlated to changes in Trpv6 mRNA (Fig. 3C) and protein (Fig. 8C). There was virtually no discernable change in calcium levels after a single dose, whereas cumulative changes were observed after the 2nd to 4th doses (Fig. 8D). These changes could be attributed to the relatively high and transient elevation of both the intestinal and renal Trpv6 mRNA, raising the plasma calcium concentrations by 10–40% during the successive dosing regimen (Fig. 8D). However, due to the 2.2-fold higher Trpv6 protein level in the duodenum compared with that in kidney (Fig. 8B), the intestine is likely a greater contributor to calcium absorption. This notion was supported by others as well (15, 54).

The mean basal plasma PTH level was 68.8 ± 14.8 pg/ml in control mice (Fig. 9). After a single dose of 1,25(OH)2D3, mouse plasma PTH initially increased (to ~148 pg/ml) in the first 5 min postinjection, but levels then immediately dropped to 12–34 pg/ml between 6 and 48 h before returning back to basal levels on the eighth day (Fig. 9A). Multiple dosing of 1,25(OH)2D3 to mice generally led to sustained decreased plasma PTH (between 0 and 30 pg/ml) throughout the course of treatment, except at two sampling time points (0.5 h after 3rd injection and 9 h after 4th injection; Fig. 9B), likely due to sampling variation and small sample size.

DISCUSSION

Our efforts represent one of the first studies to examine plasma and tissue 1,25(OH)2D3 concentrations accompanying the exogenous 1,25(OH)2D3 administration to mice. Despite being tightly bound to the vitamin D binding protein (DBP) in the plasma, we observed rapid distribution of 1,25(OH)2D3 into tissues due to the lipophilic nature of the compound (19). 1,25(OH)2D3 is able to enter and distribute into tissues rapidly, including the kidney, intestine, bone (Fig. 1), liver, and brain (data not shown) regardless of differences in VDR abundance. The parallel patterns of rise and decay for 1,25(OH)2D3 sug-

Fig. 8. Distribution (A and B) and temporal changes (C) of Trpv6 (89 kDa) relative protein expression in duodenum, jejunum, ileum, colon, and kidney after multiple doses of 1,25(OH)2D3. D: temporal changes of plasma calcium from a single dose or multiple doses of 1,25(OH)2D3 to mice. A: comparison of Trpv6 protein in different intestinal segments was normalized to villin. B: comparison of Trpv6 protein between duodenum and kidney was normalized to Gapdh. Data for A and B represent means ± SE (n = 3 or 4). †P < 0.05, basal duodenal control vs. basal control of other intestinal segments (Mann-Whitney U-test). B: #P < 0.05, basal duodenal control vs. basal kidney control (Mann-Whitney U-test). C and D: data for vehicle-treated mice (control) were averaged and are denoted as open circles interconnected by solid line (n = 2–4). For treated mice, individual 1,25(OH)2D3 datum is shown (solid circle); averaged values are joined by dashed line (n = 2–4).
gest rapid entry, distribution, and equilibrium between tissue and plasma. 1,25(OH)\(_2\)D\(_3\) concentrations in the kidney and intestine remained predominantly above basal levels during and after 1,25(OH)\(_2\)D\(_3\) treatment (Fig. 2), implying that the present regimen for treatment of 1,25(OH)\(_2\)D\(_3\) could result in sustained local pharmacological effects. Under basal conditions, the tissue-to-plasma partitioning ratios are for ileum 0.41 ± 0.12, for kidney 0.33 ± 0.07, and for bone 0.15 ± 0.16 (Fig. 1). Those in the liver (0.13 ± 0.04) and brain (0.007 ± 0.003) were also lower (data not shown).

Upon correlation of the plasma and tissue 1,25(OH)\(_2\)D\(_3\) concentration-time profiles to changes of VDR target genes in mice, we found that maximal induction of VDR target genes such as Trpv6 and Cyp24a1 mRNA expression in intestine were similar after single vs. repeated dosing (Figs. 3, B and C), with the peak occurring between 3 and 9 h postinjection, lagging behind the peak 1,25(OH)\(_2\)D\(_3\) concentration in ileum (at ~0.5–1 h) (Fig. 2). This lag time is not unexpected and is likely the result of the time required for translocation of the VDR into the nucleus for heterodimerization with the RXR to initiate transcription. Changes in renal VDR, Cyp24a1, and Mdr1 mRNA expression also showed the time lag but were more sustained after repeated dosing, since the VDR level was elevated and was more responsive to 1,25(OH)\(_2\)D\(_3\) treatment (Figs. 4 and 5). In addition, tissue ileal and kidney concentrations of 1,25(OH)\(_2\)D\(_3\) at 3–9 h after each 1,25(OH)\(_2\)D\(_3\) administration remained elevated above baseline values (Fig. 2), at which time maximal induction of renal and ileal Cyp24a1, VDR and Trpv6 mRNA expression was noted (Figs. 3 and 4).

Cyp24a1 is a major VDR-responsive gene (9, 29) that metabolizes 1,25(OH)\(_2\)D\(_3\) to 1,24,25-trihydroxyvitamin D\(_3\) and 25-hydroxyvitamin D\(_3\) to 24,25-dihydroxyvitamin D\(_3\) (30), and absence of Cyp24a1 in Cyp24 knockout mice drastically reduces 1,25(OH)\(_2\)D\(_3\) metabolism (35). In this study, we found that induction of ileal Cyp24a1 mRNA (Fig. 3B) was much greater than that for renal Cyp24a1 (Fig. 4B), although renal Cyp24a1 induction was more sustained (maintained above 40-fold of basal level) than that of the ileum, whose Cyp24a1 levels rapidly returned to basal levels at 24 h (Fig. 3B). There are perhaps two potential explanations. First, enterocytes in the intestine have a much higher turnover rate than renal tubular cells (7, 24), reducing the sustainability of ileal Cyp24a1 induction. Second, renal and not ileal VDR was induced, and renal induction of VDR continued upon multiple dosing of 1,25(OH)\(_2\)D\(_3\) (Fig. 4B), resulting in higher expression of renal Cyp24a1 mRNA. Visually, a correlation could be identified between renal VDR and Cyp24a1 mRNA levels (Fig. 4B), although no correlation was noted between ileal Cyp24a1 mRNA and VDR due to the small change in VDR (Fig. 3B).

The induction pattern of renal Mdr1 mRNA (Fig. 5B), another VDR target gene (44), was similar to that of renal VDR mRNA (Fig. 4A). Induction of both Mdr1 mRNA and P-gp protein was sustained in the kidney after consecutive injections of 1,25(OH)\(_2\)D\(_3\) (Fig. 5, B and C). A higher P-gp protein expression (2.7-fold increase) was observed previously for the enhanced renal but not intestinal excretion of digoxin, a P-gp substrate, when the same 1,25(OH)\(_2\)D\(_3\) doses were administered to the mouse (11), as found in the present study (Fig. 5C). Thus, VDR regulates Mdr1 and P-gp induction in a tissue-specific manner.

Plasma calcium levels (Fig. 8C) were greatly influenced by temporal changes in mRNA and protein expression of Trpv6, which was increased by 1,25(OH)\(_2\)D\(_3\) treatment in both the intestine and kidney (Figs. 3C, 4C, and 8C). The calcium channel Trpv6 together with Trpv5 mediate the transcellular calcium transport following binding to calbindin to facilitate calcium diffusion across the basolateral membrane and extrusion via the ATP-dependent Ca\(^{2+}\)-ATPase, PMCA1b, and Na\(^+\)/Ca\(^{2+}\) exchanger NCX1 (28). Trpv6 is a major contributor for the apical, intestinal absorption of calcium, since a lack of Trpv6 in knockout mice resulted in significant reduction in calcium absorption and plasma calcium levels (5, 16). Calcium balance is intimately related to Trpv5/6, whose channel activities are stimulated by the VDR primarily via the genomic transcription of the VDREs and by the estrogen receptor, ER\(\alpha\) (28). The increase in Trpv6 mRNA and protein expression in the mouse intestine and kidney strongly correlates with the increase (10–40%) in plasma calcium (Figs. 3C, 4C, and 8C).
and D) that in turn attenuated plasma PTH level (Fig. 9B) under our dosing regimen of 1,25(OH)₂D₃. Elevated plasma calcium is expected to activate the CaSR in the parathyroid gland to inhibit synthesis of PTH, which in turn reduces the mRNA expression of renal Cyp27b1 (23, 30). These immediate changes were found in response to the single and multiple 1,25(OH)₂D₃ doses in our study (Fig. 4D). Changes in ileal and renal Trpv6 protein expression and calcium (Fig. 8, C and D) indirectly regulated renal Cyp27b1 (Fig. 4D) via reduction of PTH (Fig. 9). Moreover, the higher Trpv6 protein content in the duodenum compared with that in kidney (Fig. 8B) suggests that the intestine is the more important organ than the kidney with respect to Trpv6 induction and calcium absorption (Fig. 8D).

Treatment of 1,25(OH)₂D₃ is known to result in both genomic and nongenomic effects (43), as noted for Cyp24 (25, 40). However, nongenomic effects are difficult to monitor, since these effects occur rapidly (from seconds to a few minutes), exemplified by the opening of calcium channels for calcium influx without changes in gene or protein (43). We believe that chronic treatment of 1,25(OH)₂D₃ will result in VDR effects that are mostly genomic, since there are notable changes in mRNA and protein levels of VDR target genes, namely, VDR, Cyp24a1, Trpv6, and Mdr1/p-gp (Figs. 3–8). Then we examined the correlation between 1,25(OH)₂D₃ levels vs. mRNA expression of VDR target genes. Our data revealed that the concentrations of 1,25(OH)₂D₃ in plasma and tissues peaked at 0.5 to 1 h (Fig. 2) and decayed rapidly with a t½ of ~6 h (Table 2), and induction of mRNA expression of VDR target genes in the ileum and kidney peaked at 3–9 h (Figs. 3 and 4), but there was no distinct pattern for protein expressions for many of the VDR target genes (Figs. 6–8). In sum, the derived correlation was not always meaningful. A positive correlation would have been expected between the 1,25(OH)₂D₃ and calcium levels in plasma if nongenomic effects had prevailed; however, a negative correlation was observed (data not shown). As expected, the correlation failed to divulge information on VDR mechanisms. The transduction processes are a multistep phenomenon that may involve multiple organs and multiple feedback or feed-forward loops, which is quite complex, especially with respect to calcium level.

Data from this study conclusively show that 1,25(OH)₂D₃ enters tissues rapidly, shown by the parallel disposition profiles. The terminal half-life and the area under the curve (AUC₀–∞) of total 1,25(OH)₂D₃ (administered + endogenous) remained relatively unchanged between doses, and no trend was identifiable (Table 2 and Fig. 2). The lack of pharmacokinetic changes in drug exposure in these mouse studies is attributed to the immediate, maximal changes in the degradation and synthetic enzymes, Cyp24a1 and Cyp27b1, by VDR activation after the first administration of 1,25(OH)₂D₃. Hence, repeated dosing renders similar pharmacokinetic effects. A pattern may be discerned for the temporal changes in tissue where concentrations of 1,25(OH)₂D₃ are correlated to temporal changes in the expression of some VDR target genes. VDR activation increased Trpv6 expression, which was higher in intestine and less so in kidney. Trpv6 is also responsible for the sustained elevation of calcium and attenuation of PTH in plasma upon repeated 1,25(OH)₂D₃ dosing. With the higher, prevailing calcium concentration, decreased plasma PTH level and Cyp27b1 expression in kidney ensued, rendering a lower thesis of 1,25(OH)₂D₃. Rapid induction of Cyp24a1 mRNA and protein expression in kidney hastens 1,25(OH)₂D₃ clearance, evidenced by plasma 1,25(OH)₂D₃ falling below basal levels 24 h after single and chronic 1,25(OH)₂D₃ dosing. The temporal relationships between VDR target genes and 1,25(OH)₂D₃ levels in tissues and the dose- and route-dependency are currently under investigation with a mechanism-based pharmacokinetic/pharmacodynamic model.

ACKNOWLEDGMENTS

We thank Matthew R. Durk for assistance in harvesting the tissues, and Dennis Wagner, Department of Nutritional Science, University of Toronto, for advice on the EIA assay.

GRANTS

This work was supported by research grants from the Canadian Institutes for Health Research. E. C. Y. Chow was a recipient of the University of Toronto Queen's Research Fellowship and the National Sciences and the Engineering Research Council of Canada, Alexander Graham Bell Canada Graduate Scholarship (NSERC-CGS). H. P. Quach was a recipient of the NSERC-CGS and Ontario Graduate Scholarship (OGS) fellowships.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

11. Chow EC, Durk MR, Cummins CL, Pang KS. 1α,25-Dihydroxyvitamin D₃ up-regulates P-glycoprotein via the vitamin D receptor and not farne-
soid X receptor in both fxr(−/−) and fxr(+/+) mice and increased renal and brain efflux of digoxin in mice in vivo. J Pharmacol Exp Ther 337: 846–859, 2011.

