Carbon monoxide-releasing molecules reverse leptin resistance induced by endoplasmic reticulum stress

Min Zheng,1* Qinggao Zhang,2* Yeonsoo Joe,3 Seul-Ki Kim,3 Md. Jamal Uddin,3 Hyunyul Rhew,4 Taeksang Kim,4 Stefan W. Ryter,5 and Hun Taeg Chung3

1Department of Medical Science, University of Ulsan, Ulsan, Korea; 2College of Basic Medicine, Yanbian University, Yanji, China; 3School of Biological Sciences, University of Ulsan, Ulsan, Korea; 4Department of Urology, College of Medicine, Kosin University, Busan, Korea; and 5Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

Submitted 17 September 2012; accepted in final form 6 February 2013

LEPTIN, A CIRCULATING PROTEIN HORMONE, acts as a regulator of food intake and body weight through its actions in the brain (23). The leptin receptor (Ob-Rb) is the product of the diabetes (db) gene (30). Binding of leptin to Ob-Rb activates Janus kinase-2 (JAK2), which catalyzes the tyrosine phosphorylation of Ob-Rb. Subsequently, the signal transducer and activator of transcription 3 (STAT3) protein binds to phosphotyrosine (Tyr1138) of Ob-Rb and as a result undergoes JAK2-dependent tyrosine phosphorylation. Activated STAT3 subsequently dissociates from the receptor, dimerizes in the cytoplasm, and then translocates to the nucleus to regulate gene transcription.

Because substitution of the Tyr1138 residue of Ob-Rb causes severe obesity in mice, STAT3 represents an important mediator in the regulation of body weight by leptin (2, 8, 15).

Obesity is a condition of excess body fat that in turn may have adverse effects on health. Furthermore, leptin resistance is considered one of the major causes of obesity (16). Leptin therapy could therefore represent an important tool for obesity treatment. Several signaling proteins may contribute to leptin resistance, including suppressor of cytokine signaling 3 (SOCS3) (3, 4), and protein tyrosine phosphatase-1B (PTP1B) (7). Furthermore, obesity-induced insulin resistance and type 2 diabetes can be mediated by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway (19). Recent studies have shown that ER stress plays a central role in the development of leptin resistance (18), of which the underlying mechanisms remain incompletely understood.

The ER is a major organelle of the eukaryotic cell that functions as the site of protein synthesis, maturation, and folding. Perturbation of these processes causes ER stress, leading to activation of the UPR (22). In mammalian cells, the UPR is a complex signaling network that includes three ER stress sensors: the double-stranded RNA-activated protein kinase-like ER kinase (PERK), the inositol-requiring transmembrane kinase/endonuclease 1α (IRE1α) phosphorylation induced by ER stress. IRE1α knockdown rescued leptin resistance, whereas PERK knockdown blocked CO-dependent regulation of IRE1α. In vivo, CO inhalation normalized body weight in animals fed high-fat diets. Furthermore, CO modulated ER stress pathways and rescued leptin resistance in vivo. In conclusion, the pathological mechanism of leptin resistance may be ameliorated by the pharmacological application of CO.

leptin; endoplasmic reticulum stress; carbon monoxide; leptin resistance; high fat diets

* M. Zheng and Q. Zhang contributed equally to this work.
Address for reprint requests and other correspondence: H. T. Chung, School of Biological Sciences, Univ. of Ulsan, Ulsan 680-749, Korea (e-mail: chung@ulsan.ac.kr).
(MAPK) signaling pathways. Furthermore, the antiapoptotic effect of CO in endothelial cells depends on the inhibition of Fas expression and caspase-3 activation (28). Recent studies have shown that ER stress-induced endothelial cell apoptosis can be blocked by CO via the inhibition of CHOP expression (13). In the current study, we examined the hypothesis that CO could inhibit ER stress-induced leptin resistance.

METHODS

Reagents. Tricarbonyl dichlororuthenium (II) dimer (CORM-2) was from Sigma-Aldrich (St. Louis, MO). Leptin was from R&D Systems (Minneapolis, MN). Thapsigargin (TG) and tunicamycin (TM) were from Calbiochem (La Jolla, CA). Lipofectamine 2000 was from Invitrogen Life Technologies (Grand Island, NY). Antibodies to phospho-(p)-PERK, PERK, eIF2α, CHOP, Ob-R, STAT3, and β-actin were from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to p-STAT3 (Tyr705) and p-eIF2α were from Cell Signaling Technology (Beverly, MA). The antibody to IRE1α was from Novus Biologicals (Littleton, CO). The small interfering (si)RNA against IRE1α and PERK were from Santa Cruz Biotechnology, Palmitate and all other chemicals were obtained from Sigma-Aldrich.

Cell culture. Chinese hamster CHO-K1 cells were obtained from American Type Tissue Collection (ATCC, Manassas, VA) maintained in Ham’s F-12 nutrient mixture supplemented with 10% heat-inactivated fetal bovine serum (FBS). Human neuroblastoma SK-N-AS cells (ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated FBS. Wild-type and IRE1α−/− murine embryo fibroblasts (MEF) cells were obtained from Dr. R. J. Kaufman (University of Michigan) and cultured in DMEM containing 10% FBS and 1× nonessential amino acids. Cell cultures were maintained at 37°C in humidified incubators containing 5% CO2 and 95% air.

Generation of Ob-Rb lepton receptor transient and stable-transfected cell lines. The Ob-Rb lepton receptor plasmid DNA was a kind gift from Dr. Sung-Kyu Ju. The Ob-Rb lepton receptor construct was transiently transfected into SK-N-AS and MEF cells using the Lipofectamine reagent (Invitrogen) according to the manufacturer’s instructions. CHO-K1 cells were transfected with Ob-Rb using Lipofectamine, and then stable transfectants were obtained by selection with hygromycin (12).

Western blot and densitometry analyses. After treatment, cells were harvested and washed twice with ice-cold PBS. Cells were lysed for 20 min in lysis buffer, 150 mM NaCl, 1.0% IGE PAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, containing protease and phosphatase inhibitor cocktails. The lysates were centrifuged at 13,000 rpm for 15 min at 4°C, and the supernatants were collected. Protein content was measured with BCA protein assay reagent (Pierce). The samples were boiled with Laemmli buffer for 5 min, and equal amounts of protein (50 μg of protein) were separated on 7.5–12% SDS-PAGE and transferred to polyvinylidene difluoride membranes. The membranes were blocked with 5% nonfat milk in PBS containing 0.1% Tween 20 (PBS-T) for 30 min and incubated with antibodies to p-STAT3 (1:1,000), PERK (1:500), eIF2α (1:1,000), IRE1 (1:500), Ob-R (1:500), and CHOP (1:500) in PBS-T containing 1% nonfat milk for 3 h. After washing three times with PBS-T, the membranes were hybridized with horseradish peroxidase-conjugated secondary antibodies for 40 min. Following five washes with PBS-T, the membranes were incubated with chemiluminescence solution for 5 min, and protein bands were visualized on X-ray film. For the densitometry analysis, optical density (the grayscale value of pixels: 0 to 255) was measured on inverted digital images using Scion Image Software (Scion, Frederick, MD).

Transfection of siRNAs. Predesigned siRNAs against human IRE1α and PERK were purchased from Santa Cruz Biotechnology. Cells were transfected with double-stranded siRNAs (50 nM) for 12 h by the Lipofectamine method according to the manufacturer’s protocol (Invitrogen Life Technologies) and allowed to recover in fresh medium containing 10% FBS for 24 h. The interferences of IRE1α and PERK expression were confirmed by immunoblotting using anti-IRE1α antibodies. Scrambled siRNA was used as a control.

Animals. All experiments with mice were approved by the Animal Care Committee of the University of Ulsan. Seven-week-old male C57BL/6 wild-type mice were purchased from ORIENT (Pusan, Korea). The mice were maintained under specific pathogen-free conditions at 22°C and given access to food and water ad libitum. For in vivo experiments, mice were fed a high-fat diet (D12492; Research Diet, New Brunswick, NJ), or normal diet (control) for 16 wk. Starting at the sixth week, mice inhaled CO (250 ppm) in air (Core Gas Ulsan, Korea) for 2 h each day for 10 wk. Mice were placed in an exposure chamber (LB science, Daejeon, Korea) at room temperature for exposure to air (control) or to 250 ppm CO as monitored by a CO probe (Tongoy Control Technology, Beijing, China). Mice inhaled CO from 10 AM to 12 PM and were given free access to food.

Food intake in grams was recorded using the method of Twenty Four Hour Intake. Food intake was measured with mice housed in group cages, providing an average intake per mouse. For statistical values, food intake was measured twice a week for 3 wk. Body weight was recorded weekly. Animals were euthanized, and samples of hypothalamus were dissected. Homogenates of the hypothalamus were analyzed for PERK or IRE1α phosphorylation by Western immunoblot analysis. Additionally, animals were given a dose of leptin (1 mg/kg ip) 30 min prior to being euthanized. p-STAT3 and STAT3 levels were analyzed in samples of hypothalamus by Western immunoblot analysis.

Measurement of serum leptin. Serum from blood samples was obtained by centrifugation at 13,000 rpm for 10 min, and leptin was determined using a commercially available ELISA kit (R&D Systems), the procedures being performed according to the manufacturer’s protocol.

Statistical analyses. Data were expressed as means ± SD, and t-tests were used to assess significant differences between groups. A P value < 0.05 was considered to represent a statistically significant change.

RESULTS

CO reverses ER stress-induced leptin resistance. ER stress has been reported to induce leptin resistance (11), although the effects of CO on this process are not known. We first confirmed that leptin increased STAT3 phosphorylation in SK-N-AS cells that were transfected with the Ob-Rb lepton receptor (SK-N-AS-Ob-Rb cells). Treatment of Ob-Rb transfected cells with the chemical inducer of ER stress TM induced leptin resistance, as shown by the loss of STAT3 phosphorylation in response to leptin stimulation (Fig. 1A). We next investigated whether CO could rescue leptin resistance induced by UPR-associated ER stress in SK-N-AS-Ob-Rb cells. As shown in Fig. 1A, administration of the CO-releasing molecule (CORM-2) dose-dependently reversed the inhibition of leptin-dependent STAT3 phosphorylation in SK-N-AS-Ob-Rb cells that were exposed to the ER stress agent TM. To validate the effects of leptin on STAT3 phosphorylation, we used the Ob-Rb-transfected CHO-K1 (CHO-K1-Ob-Rb) cells, using IL-6 stimulation as a positive control. In Fig. 1B, leptin increased the levels of STAT3 phosphorylation in a dose-dependent manner like IL-6 stimulation in CHO-K1-Ob-Rb cells. However, CORM-2 or ER stress agents alone or in combination did not significantly affect the expression of the leptin receptor (Fig. 1C).
CORM-2 treatment alone did not significantly modulate STAT3 phosphorylation (Fig. 1A).

Chemical chaperones such as 4-phenylbutyric acid (4-PBA) are known to block ER stress-induced responses (18). Similar to the effects observed with CORM-2 treatment, treatment with 4-PBA recovered leptin-dependent STAT3 phosphorylation in SK-N-AS-Ob-Rb cells exposed to TM (Fig. 1D). These results, taken together, suggest that CO reverses leptin resistance resulting from ER stress.

CO induces activation of the PERK branch of the UPR in the ER stress response. We induced ER stress with agents that interfere with protein glycosylation (TM) or Ca\(^{2+}\) balance (TG). These ER stress-inducing compounds activated the PERK branch of the ER stress response and induced phosphorylation of PERK and its downstream target, the eukaryotic translation initiation factor 2α (eIF2α) (Fig. 2A).

We next examined effects of CO delivered by CORM-2 on ER stress pathways. We found that treatment of SK-N-AS-Ob-Rb cells with CORM-2 activated the phosphorylation of PERK, a major UPR signaling component. CO-induced activation of PERK was followed by the increased phosphorylation of eIF2α. Both TM and TG time-dependently induced the phosphorylation of IRE1α in SK-N-AS-Ob-Rb cells. In contrast, CORM-2 treatment alone had no effect on the phosphorylation of IRE1α (Fig. 2B). TM treatment also activated Xbp-1 expression and ATF6 cleavage in SK-N-AS-Ob-Rb cells. In contrast, CORM-2 treatment alone did not activate the expression of Xbp-1, nor did it stimulate ATF6 cleavage (Fig. 2C). CORM-2 treatment did not affect the expression of the UPR-regulated genes GRP78 and CHOP in these cells (Fig. 2D). These results suggest that CO can potentially modulate the ER stress response specifically through enhanced activation of the PERK pathway.

We next examined the effect of CORM-2 in modulating the response to ER stress agents. Whereas application of TG or CORM-2 alone stimulated PERK phosphorylation in SK-N-AS-Ob-Rb cells, an additive effect was observed when SK-N-AS-Ob-Rb cells were pretreated with CORM-2 and then exposed to TG (Fig. 3A). In contrast, pretreatment with CORM-2 inhibited the phosphorylation of IRE1α that was induced by TG treatment (Fig. 3B). Pretreatment with CORM-2 inhibited the activation of Xbp-1 expression and ATF6 cleavage in SK-N-AS-Ob-Rb cells exposed to TG (Fig. 3C).

We next determined the relevance of the PERK branch of the UPR in mediating the inhibitory effects of CORM-2 on
We observed that CO inhibited ER stress by downregulating the inhibition of the PERK branch of UPR.

ER stress-induced IRE1α). These results suggest that CORM-2 treatment recovers treatment inhibited the phosphorylation of IRE1α in response to TG. In contrast, the inhibitory effect of CORM-2 on TG-induced IRE1α phosphorylation was compromised in SK-N-AS-Ob-Rb cells transfected with siRNA targeting PERK (Fig. 3D). These results suggest that CORM-2 treatment recovers ER stress-induced IRE1α phosphorylation via increased stimulation of the PERK branch of UPR.

IRE1α is involved in ER stress-induced leptin resistance. We observed that CO inhibited ER stress by downregulating the IRE1α branch of UPR signaling in SK-N-AS-Ob-Rb cells. To determine the involvement of IRE1α in ER stress-induced leptin resistance, we used siRNA to silence the IRE1α gene. SK-N-AS-Ob-Rb cells were transiently transfected with siRNA specific for IRE1α, and the efficiency of IRE1α knockdown was validated (Fig. 4A). In nontransfected cells treated with TM, ER stress-induced leptin resistance was observed, as evidenced by impaired STAT3 phosphorylation in response to leptin stimulation. In contrast, transfection of SK-N-AS-Ob-Rb cells with siRNA targeting IRE1α partially ameliorated ER stress-induced leptin resistance (Fig. 4B). These results suggest that the IRE1α branch of the UPR is involved in ER stress-induced leptin resistance.

To further validate the role of the IRE1α pathway in leptin resistance, we used IRE1α−/− murine embryo fibroblasts (MEFs) and transfected them with Ob-Rb. In wild-type MEFs expressing Ob-Rb, TM induced leptin resistance, as evidenced by impaired STAT3 phosphorylation in response to leptin stimulation. In contrast, in IRE1α−/− MEFs expressing Ob-Rb, treatment with TM failed to induce leptin resistance, as evidenced by levels of STAT3 phosphorylation in response to leptin, which were comparable to that observed in cells untreated with TM (Fig. 4C).

CO reversed fatty acid-induced leptin resistance in vitro. Exposure to free fatty acids such as palmitate has been shown to cause ER stress and leptin resistance (1, 14). We therefore tested whether CO could reverse fatty acid-induced ER stress. Treatment with palmitate dose-dependently induced the expression of the ER stress transducer CHOP in SK-N-AS-Ob-Rb cells when applied at doses from 50 to 200 μM in the culture medium (Fig. 5A). Pretreatment with CORM-2 reversed the induction of CHOP expression by palmitate treatment (200 μM; Fig. 5B). Palmitate treatment caused leptin resistance in vitro as evidenced by the dose-dependent inhibition of leptin-inducible STAT3 phosphorylation in SK-N-AS-Ob-Rb cells (Fig. 5C). CORM-2 pretreatment reversed palmitate-induced leptin resistance as evidenced by rescue of leptin-dependent STAT3 phosphorylation (Fig. 5D).

CO reversed high-fat diet-induced leptin resistance by modulating the ER stress response in mice. We next studied the effects of CO application on body weight gain and leptin resistance in vivo. Mice were maintained on a high-fat or normal diet (control) for 16 wk. At the 6th week, mice inhaled CO (250 ppm) or room air for 2 h every day for an additional 10 wk. CO inhalation resulted in reduced body weight in high-fat diet-induced obese mice but did not affect body weight in normal (control) mice fed a regular diet (Fig. 6A). CO treatment also reduced total food intake in obese mice on a high-fat diet (Fig. 6B). To evaluate the effect of CO inhalation...
on fat mass and circulating leptin levels, mice were fed a high-fat or normal diet. The inhalation of CO in diet-induced obese mice decreased epididymal (Fig. 6C) and perirenal fat (Fig. 6D) content and serum leptin levels (Fig. 6E). In contrast to the high-fat group, there was no effect of CO inhalation on the normal-diet group. CO reversed high-fat diet-induced leptin resistance by modulating the ER stress response in mice. We also studied the effects of CO application on ER stress responses in vivo. CO inhalation (250 ppm) resulted in elevated PERK phosphorylation in the hypothalamus of animals on a high-fat diet relative to hypothalamus tissue of air-treated animals on a high-fat diet or normal diet controls (Fig. 7A), IRE1α was activated in the hypothalamus of animals on high-fat diet and reduced in those animals by inhalation of CO (Fig. 7B). Maintenance on a high-fat diet caused leptin resistance in mice as evidenced by reduction of leptin-induced STAT3 phosphorylation. This dietary-induced leptin resistance was rescued by CO inhalation (250 ppm; Fig. 7C).

DISCUSSION

In the present study, we have shown that the pharmacological application of CO reverses leptin resistance associated with ER stress in vitro and in vivo. We therefore studied the mechanisms underlying the protective effect of CO against ER stress-induced leptin resistance. Mice that lack the functional long isoform of Ob-Rb (db/db mice) become obese through increases in food intake, demonstrating an essential role of Ob-Rb in the response to leptin. Leptin induces the phosphor-

Fig. 3. CO induces activation of PERK branch of ER stress in SK-N-AS-Ob-Rb cells. A and B: SK-N-AS-Ob-Rb cells were preincubated with CORM-2 (20 μM) for 2 h and then treated with TG (1 μM, 4 h), and expression levels of p-PERK and p-IRE1α were analyzed by Western blotting. Dephospho forms served as the standard. C: SK-N-AS-Ob-Rb cells were preincubated with CORM-2 (20 μM) for 2 h and then treated with TG (1 μM, 4 h), and expression levels of Xbp-1 and p50 ATF6 were analyzed by Western blotting; β-actin served as the standard. D: 36 h after transfection, Western blotting analysis was performed for PERK protein expression; β-actin served as the standard. E: 36 h after transfection, cells were preincubated with CORM-2 (20 μM) for 2 h and then treated with TG (1 μM, 4 h), and expression levels of p-IRE1α were analyzed by Western blotting and quantified by densitometry; n = 3. P < 0.05.
Inhalation at low concentration or by pharmacological delivery can exert physiological roles in cell homeostasis (17, 20). Application of CO by HO activity, can block ER stress-induced leptin resistance (11, 18). Furthermore, 4-PBA, a chemical chaperone that can inhibit ER stress induced by chemical agents or free fatty acids can contribute to leptin resistance (2). Taken together, these findings indicate that the leptin/Ob-Rb-STAT3 signal, also results in marked obesity in mice (9, 10, 26). In contrast, both the short and long isoforms of murine embryo fibroblasts (MEF) Ob-Rb cells were preincubated with CORM-2 (20 µM) for 2 h and then treated with palmitate (200 µM, 6 h), and expression levels of p-STAT3 were analyzed by Western blotting and quantified by densitometry; n = 3. *P < 0.05.

Recent studies have shown that ER stress induced by chemical agents or free fatty acids can contribute to leptin resistance (11, 18). Furthermore, 4-PBA, a chemical chaperone that can stabilize protein conformation and improve the protein folding capacity of the ER, can block ER stress-induced leptin resistance (18).

CO, a small gaseous molecule that is produced endogenously by HO activity, can exert physiological roles in cell signaling and homeostasis (17, 20). Application of CO by inhalation at low concentration or by pharmacological delivery with CORMs can confer organ protection in animal models of tissue injury, including ischemia/reperfusion injury and inflammatory lung injury (20).

We (13) have previously shown that CO activated Nrf2 through the phosphorylation of PERK, resulting in the expression of the cytoprotective molecule HO-1. We therefore hypothesized that CO might also inhibit ER stress-induced leptin resistance through amelioration of the ER stress pathway. We observed that CORM-2 reversed ER stress-induced leptin resistance in vitro induced either by chemical agents (i.e., TG, TM) or by treatment with free fatty acid. According to report of Hosoi et al. (11), even though ER stress induces leptin resistance, it does not change the expression level of the leptin receptor (Ob-Rb). Likewise, the effects of CO on downregulation of ER stress-induced leptin resistance were not related to changes in the expression of the leptin receptor (Ob-Rb). To further determine mechanisms underlying the inhibitory effect of CO on leptin resistance induced by ER stress, we studied the effects of CO on the PERK branch of the UPR. We previously demonstrated that CO treatment increased the phosphorylation of PERK. CO-induced PERK activation was followed by eIF2α phosphorylation and increased ATF4 expression (13).

Fig. 4. IRE1 is involved in ER stress-induced leptin resistance in SK-N-AS-Ob-Rb Cells. A and B: SK-N-AS-Ob-Rb cells were transfected with control (si Con) or IRE1α siRNA (si IRE1) (50 nM). A: 36 h after transfection, Western blotting analysis was performed for IRE1α protein expression; β-actin served as the standard. B: 36 h after transfection, cells treated with TM (2 µg/ml, 4 h) and stimulated with leptin (10 µg/ml) for 15 min had Western blotting analysis performed for p-STAT3 and STAT3 expression. C: IRE1−/− and IRE1+/− murine embryo fibroblasts (MEF) Ob-Rb cells were preincubated with CORM-2 (20 µM) for 2 h and then treated with TM (2 µg/ml, 4 h), and then expression levels of p-STAT3 were analyzed by Western blotting and quantified by densitometry; n = 3. *P < 0.05.

Fig. 5. CO reverses palmitate-induced leptin resistance in SK-N-AS-Ob-Rb cells. SK-N-AS-Ob-Rb cells were incubated with palmitate at indicated concentrations for 6 h (A), or preincubated with CORM-2 (20 µM) for 2 h (B), and then treated with palmitate (200 µM, 6 h), and expression levels of p-PERK, p-IRE1α, and CHOP were analyzed by Western blotting. C: SK-N-AS-Ob-Rb cells were preincubated with palmitate at the indicated concentrations for 6 h, and then treated with leptin (10 µg/ml) for 15 min. Cell lysates were subjected to Western blotting analysis for p-STAT3 and STAT3 expression. D: SK-N-AS-Ob-Rb cells were preincubated with CORM-2 (20 µM) for 2 h and then treated with palmitate (200 µM/ml, 6 h) and then stimulated with leptin (10 µg/ml) for 15 min. p-STAT3 and STAT3 levels were analyzed by Western blotting.

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00466.2012 • www.ajpendo.org
Unlike its effects on PERK activation, CO did not activate Xbp-1 or ATF6. Instead, CO pretreatment blocked Xbp-1 and ATF6 activation caused by the ER stress response (13). In the current study, CO increased the phosphorylation of PERK and eIF2α to a greater extent than treatment with TM alone. Elevated increases of PERK and eIF2α phosphorylation by CO treatment in the presence of TM may protect protein biosynthesis. Furthermore, CO pretreatment could not block IRE1 phosphorylation by an ER stress inducer under conditions of downregulation of PERK expression by siRNA. Potential mechanisms by which the activation of PERK is affected by CO are still not clear; however, we suggest that CO induced reactive oxygen species (31) might be responsible for the phosphorylation of PERK. We have observed that CO-induced PERK phosphorylation can be inhibited with the use of hemoglobin or the antioxidant NAC (data not shown). These results, taken together, suggest that CO rescues ER stress-induced IRE1α phosphorylation via enhanced phosphorylation of PERK.

We also investigated whether another branch of the UPR, IRE1α, could be involved in ER stress-induced leptin resis-

Fig. 6. Inhaled CO reduces body weight, food intake, adipose pads, and serum leptin induced by high-fat diet (HFD). A: after feeding mice HFD or normal diet (ND; control) for 16 wk, mice inhaled CO (250 ppm) for 2 h each day for 10 wk. Inhalation of CO in diet-induced obese mice decreased body weight. In contrast to high-fat group, there was no effect of CO inhalation on the normal diet group. ***P < 0.001. B: food intake was decreased by CO inhalation in the high-fat group. *P < 0.05. C, D, and E: after feeding mice HFD or ND for 8 wk, mice inhaled CO (250 ppm) for 2 h each day for 4 wk. Inhalation of CO in diet-induced obese mice decreased epididymal and perirenal fat content and serum leptin levels. In contrast to HFD group, there was no effect of CO inhalation on ND group; n = 5. ***P < 0.001.

Fig. 7. CO reverses HFD-induced-leptin resistance by modulating the ER stress response in mice. Mice were fed HFD or ND for 16 wk. Beginning at the 6th week, mice inhaled CO (250 ppm) for 2 h each day for subsequent 10 wk. Western blot analyses were performed for p-PERK (A), and p-IRE1α (B). The corresponding dephospho forms served as standard. C: additionally, mice in each group were stimulated with leptin. p-STAT3 and STAT3 levels were analyzed by Western blotting. Relative protein expression was quantified by densitometry; n = 3. *P < 0.05, **P < 0.01.
Because siRNA targeting IRE1α reversed ER stress-induced leptin resistance and maintained leptin-induced STAT3 phosphorylation under ER stress conditions, we conclude that IRE1α activation mediates leptin resistance induced by ER stress. Knockdown of PERK interfered with CO-dependent regulation of IRE1α. Thus, the balance between the IRE1α and PERK branches of the UPR can alter sensitivity of the leptin signal. We cannot exclude the possibility that other uncharacterized mechanisms contribute to CO-dependent reversal of leptin resistance, and this warrants further investigation. Recently, we (24) reported that CORM-2 treatment decreased the STAT3 phosphorylation induced by IL-6 in the hepatoma cell line HepG2. We are now reporting that CORM-2 treatment increased the STAT3 phosphorylation induced by leptin in a neuronal cell line (SK-N-AS). Our results show that cross-talk between leptin and CO signals may be synergistic, whereas cross-talk between IL-6 and CO may not be additive. There are several reports that show discrepancies in the signal transduction events observed during the combination of CO and hyperoxia (29) or CO and ischemia/reperfusion, which respectively show increases or decreases in the phosphorylation status of STAT3. Thus, it appears that CO may increase or decrease STAT3 phosphorylation with variations in a cell type- and inducer-specific fashion.

Exposure to high-fat diets or treatment with free fatty acids such as palmitate can cause leptin resistance in vivo (14). Our experiments in mice suggest that CO inhalation can normalize body weight and suppress food intake in obese mice generated by maintenance on a high-fat diet. In agreement with our findings in vitro, CO inhalation increased PERK phosphorylation, decreased IRE1α, and rescued leptin resistance, as determined by normalization of leptin-dependent STAT3 phosphorylation in the hypothalamus. These finding are also supported by our in vivo observations that ER stress and leptin resistance in neural cells induced by treatment with ER stress chemicals or palmitate could be reversed by CO treatment.

In conclusion, we have demonstrated that CO-induced phosphorylation of the PERK branch of the UPR reverses ER stress-induced leptin resistance. Using STAT3 phosphorylation as an indicator of leptin-dependent signaling, we have shown that CO restores leptin-dependent STAT3 phosphorylation in the presence of ER stress compounds. The current results suggest that CO ameliorates ER stress-induced leptin resistance in vitro through activation of the PERK branch of the UPR, and inhibition of the IRE1α-dependent pathway.

Together, these findings suggest that the pathological mechanism of leptin resistance could be ameliorated by the use of CO donors. Further understanding of ER stress-induced leptin resistance may be critical to clarify the underlying molecular mechanisms and appropriate pharmacological treatment of obesity. Despite the long-standing efforts in both academia and industry, to date only chemical chaperones such as PBA and taurosodeoxycholic acid (TUDCA) have been reported as leptin-sensitizing agents (18). The results presented in this study provide evidence that CO, one of the endogenous biogases, can be used as a leptin-sensitizing agent when the leptin resistance is caused by ER stress. Further studies on the safety and efficacy of either CORM-2 or inhaled CO would be needed prior to clinical application. Pharmacological therapy using CO to modulate leptin resistance could be used as a novel therapeautic option for obesity.

ACKNOWLEDGMENTS

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (2012M3A9C3046687).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

