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MORE THAN 300 YEARS HAVE PASSED since Lorenzo Bellini’s
(1643–1704) poetic description of the taste papillae in his work
Gustus Organum (1665; see http://books.google.com/books/
about/Gustus_organum.html?id�Uo6RE1CdjUwC):

“Many papillae are evident, I might say, innumerable, and
the appearance is so elegant that they catch the view and thoughts
of the observer, and control him for a long time and not without
enjoyment . . .” (3).

However, only at the beginning of the 20th Century were the
chemoreceptive areas of the human tongue for the qualities of
sweet, sour, salty, and bitter tastes established (9), closely
followed by the description of the distinctive quality of umami
taste (12). Another hundred years passed before the actual
sweet taste receptor was identified as a heterodimer of T1R2
and T1R3 proteins, members of the T1R G protein-coupled
family of receptors (18), thereby establishing the missing link
between the luminal sweet nutrients (e.g., glucose) and the
already known second messengers within the taste cell, e.g.,
gustducin (17, 26), adenylyl cylase, and cyclic AMP (25), as
well as phospholipase C�2 and calcium (23, 27).

Even before the description of the specific sweet taste receptor
T1R2/T1R3, the major signaling components of the taste cascade
were identified in the intestinal tract, first in the rat intestine (10).
Only four years after identification of the T1R2/T1R3 sweet
receptor on the taste cell, the expression of T1R2 and T1R3 was
verified in an intestinal cell line (STC-1, a pluripotential
enteroendocrine cell line) as well as directly in the mouse small
intestine (5). In 2007, Jang et al. (13) first established the link
between the sweet taste transduction elements and secretion of
the hormone glucagon-like peptide-1 (GLP-1) from the en-
teroendocrine L cell, proposing that glucose-associated GLP-1
secretion is mediated by the sweet taste receptor (for recent
review see Ref. 24).

The intestinal hormone GLP-1 is secreted by enteroendo-
crine L cells in response to numerous stimuli, particularly
following direct stimulation with nutrients, e.g., carbohydrates
or fat (11, 14). The biological actions of GLP-1 include
increased insulin secretion and decreased glucagon release
from the pancreatic islets; furthermore, GLP-1 delays gastric
emptying and reduces appetite (2). As a result of these potent
antidiabetic and anorectic properties, GLP-1 analogs and
GLP-1 degradation inhibitors have been successfully intro-
duced to the clinic and are considered safe for treatment of type
2 diabetes, particularly in morbidly obese patients (4). More
recently, the cardioprotective properties of GLP-1 and its
degradation products were described, particularly in patients
with ischemic heart failure (19), suggesting possible future
developments for GLP-1-based therapies. Understandably,

these results increased focus on mechanisms underlying GLP-1
secretion from the intestinal L cell as a potential novel ap-
proach in the therapy of type 2 diabetes.

While the increased GLP-1 secretion following stimulation
with glucose was well established in vivo (6) and in vitro (21),
the mechanisms underlying increased secretion were less clear.
As an alternative approach to intestinal sweet taste receptors,
the glucose-dependent closure of the KATP channel and the
activation of sodium-glucose cotransporter (SGLT1) were con-
sidered important mediators of glucose-induced GLP-1 secre-
tion, particularly due to the low expression levels of the taste
transduction elements and a missing effect of artificial sweet-
eners in primary mouse L cells (22). Some other working
groups also reported that artificial sweeteners do not stimulate
GLP-1 secretion release in rodents and humans, questioning
the role of the sweet taste receptor pathway in glucose-stimu-
lated GLP-1 secretion (7, 15, 16). To address this controversy
(for reviews see Refs. 20 and 24), further studies in mice
lacking T1R2 and T1R3 were urgently needed to verify the role
of the T1R2/T1R3 sweet taste receptor pathway in glucose-
stimulated GLP-1 secretion.

Excitingly, the study by Geraedts et al. (17a) in a recent
issue of this Journal addresses just this quite intriguing ques-
tion of the biological relevance of T1R2 and T1R3 molecules
in glucose-associated GLP-1 secretion in mice. The authors
used established models of T1R2 and T1R3 knockout mice;
additionally, some of the results of the study were reevaluated
in rats with Roux-Y gastric bypass (RYGB), an established
model for surgical treatment of morbidly obese patients. Inter-
estingly, the T1R3 but not the T1R2 knockout mice showed an
impaired response to an intestinal glucose load, particularly,
decreased insulin levels and increased glucose levels, as shown
by an oral glucose tolerance test. Furthermore, intestinal ex-
plants from the small intestine of T1R3 knockout mice failed to
secrete GLP-1 following stimulation with glucose, fructose,
and sucrose, suggesting a key role of T1R3 for GLP-1 secre-
tion. The addition of glibenclamide, a potent inhibitor of KATP

channels, did not affect GLP-1 secretion from the small intes-
tine. However, unexpectedly, the T1R3 knockout animals
showed increased GLP-1 secretion from large intestinal ex-
plants; moreover, glibenclamide significantly potentiated the
GLP-1 secretion from the colonic explants, suggesting a role of
KATP channels in GLP-1 secretion from the large, but not the
small, intestine. To address these surprising findings, the au-
thors further evaluated the changes in intestinal luminal con-
tent, detecting a significantly increased carbohydrate load in
the large intestine of the T1R3 knockout animals. As a sup-
portive model, the authors used RYGB rats; excitingly, the
RYGB rat intestinal explants showed a comparable increase in
colonic GLP-1 secretion. As expected, the RYGB rats also
showed increased intestinal carbohydrate load, suggestive of a
common mechanism.
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Collectively, this study indicates that the T1R3, but not the
T1R2 receptor, is required for glucose-dependent GLP-1 se-
cretion in mice. The role of the sweet taste transduction system
in the intestine thus appears to be strengthened by these
findings. However, the carbohydrate-associated shift in GLP-1
secretion is speculative, and the actual mechanisms underlying
the glucose-sensing apparatus, particularly in the colon, remain
unknown. Furthermore, the appearance of two different types
of GLP-1 secretion modes (small and large intestine) is unex-
pected and requires further investigation. Ultimately, this study
raises the question of structurally different L cells in the large
and small intestine, as also suggested by a recent publication
by Habib et al. (8). The phenotype of the enteroendocrine cells
seems not to be constant but distinct, depending on the local-
ization of the cell in the gut (1). More studies in native L cells
and further differentiation of available L cell lines are required
to understand the mechanisms underlying these quite intriguing
findings.

Taken together, Geraedts et al. clearly establish a key role
for the T1R3 receptor in glucose-associated GLP-1 secretion,
therein extending our understanding of the versatility of the
enteroendocrine L cell and ultimately providing alternative
approaches for future therapy of morbid obesity and type 2
diabetes mellitus.
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