Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice

P. M. Nunes,1 T. van de Weijer,2 A. Veltien,1 H. Arnts,3 M. K. C. Hesselink,4 J. F. C. Glatz,5 P. Schrauwen,2 C. J. Tack,6 and A. Heerschap1

1Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 2Department of Human Biology, NUTRIM, School of Nutrition Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; 3Central Animal Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 4Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands; 5Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands; and 6Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Submitted 23 November 2011; accepted in final form 6 April 2012

Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice. Am J Physiol Endocrinol Metab 303: E71–E81, 2012. First published April 10, 2012; doi:10.1152/ajpendo.00597.2011.—Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL−/−) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL−/− mice. In vivo 1H magnetic resonance spectroscopy of the tibialis anterior of ATGL−/− mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL−/− mice, glycogen content was decreased by 30% (P < 0.05). In vivo 31P magnetic resonance spectra of resting muscles showed that WT and ATGL−/− mice have a similar energy status: [PCr], [P_i], PCr/ATP ratio, PCr/P_i ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL−/− mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr: 54.1 ± 6.1 s for the ATGL−/− and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL−/− mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL−/− mice.

31P magnetic resonance spectroscopy; exercise

Address for reprint requests and other correspondence: P. Nunes, Dept. of Radiology, Radboud University Nijmegen Medical Centre, Postbus 9101 Geert Grootplein 10, 6500 HB Nijmegen, Netherlands (e-mail: P.Nunes@rad.umcn.nl).

Nunes PM, van de Weijer T, Veltien A, Arnts H, Hesselink MK, Glatz JF, Schrauwen P, Tack CJ, Heerschap A. Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice. Am J Physiol Endocrinol Metab 303: E71–E81, 2012. First published April 10, 2012; doi:10.1152/ajpendo.00597.2011.—Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL−/−) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL−/− mice. In vivo 1H magnetic resonance spectroscopy of the tibialis anterior of ATGL−/− mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL−/− mice, glycogen content was decreased by 30% (P < 0.05). In vivo 31P magnetic resonance spectra of resting muscles showed that WT and ATGL−/− mice have a similar energy status: [PCr], [P_i], PCr/ATP ratio, PCr/P_i ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL−/− mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr: 54.1 ± 6.1 s for the ATGL−/− and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL−/− mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL−/− mice.

31P magnetic resonance spectroscopy; exercise

ADIPOSE TRIGLYCERIDE LIPASE (ATGL), also known as desnutrin, is a ubiquitous lipolytic enzyme expressed mainly in hepatocytes, testes, adipocytes, and myocytes (29, 33, 38, 51, 54, 58). This lipase is highly specific for triglycerides (TG) and catalyzes the first step of its hydrolysis (58). Whole body ATGL-knockout mice (ATGL−/−) are mildly obese and accumulate lipids in various tissues such as skeletal muscle and heart and ultimately develop lethal cardiomyopathy (16). The ATGL−/− mice have reduced plasma free fatty acids (FFA), significantly improved insulin sensitivity, and glucose tolerance, showing evidence of a reliance on oxidation of glucose instead of fatty acid (FA) to produce energy (16, 19, 30, 41).

FFAs are the major energy substrates for muscle under submaximal exercise. Thus, diminished FA availability is one of the explanations for the exercise intolerance and poor endurance capacity of the ATGL−/− mice (19, 47). Reduced exercise performance could also be explained by the cardiac dysfunction that the ATGL−/− mice present at older age (19). However, young ATGL−/− mice without cardiac lipid accumulation and adult ATGL−/− mice with a normal cardiac ATGL expression still present abnormal exercise performance (19, 47). These studies show that, even with a normal cardiac function, ATGL−/− mice remain exercise intolerant.

While whole body ATGL ablation causes tissue-specific adaptations (30), the most pronounced modulation of biological processes by ATGL occurs in cardiac muscle. In this tissue, genetic ablation of ATGL results in a downregulation of the transcripts associated with oxidative pathways, namely genes involved in FA uptake and mitochondrial β-oxidation, as well as in glycolysis and the tricarboxylic acid cycle (42). Furthermore, a recent study demonstrated that mitochondrial substrate oxidation and respiration are severely disrupted in cardiac muscle of ATGL−/− mice due to peroxisome proliferator-activated receptor signaling (17).

Although modulation of skeletal muscle metabolism by ATGL is not as prominent as in cardiac muscle, downregulation of genes involved in ATP biosynthesis has been reported for ATGL−/− skeletal muscle (42). Moreover, the accumulation of intramyocellular lipids (IMCL) in skeletal muscle might be associated with mitochondrial dysfunction, as in obese or type 2 diabetic patients (25, 39, 40), through a mechanism not fully understood but probably involving the accumulation of active lipid intermediates along with IMCL deposition, deficits in mitochondrial β-oxidation, and increased formation of reactive oxygen species (44, 46, 48). Whether the IMCL accumulation affects skeletal muscle mitochondrial function in ATGL−/− mice is unknown.

Taken together, these data suggest that the compromised exercise performance of ATGL−/− mice is not explained solely by the inability to generate FFA for muscle oxidation but could be associated with reduced mitochondrial oxidative capacity. Therefore, we hypothesized that ATGL−/− mice have impaired muscular mitochondrial function, which contributes to their poor exercise tolerance.
To test this hypothesis, we evaluated in vivo and noninvasively the extent of IMCL accumulation in the skeletal muscle of ATGL\(^{-/-}\) mice using \(^1\)H magnetic resonance spectroscopy (MRS). To assess mitochondrial oxidative capacity of ATGL\(^{-/-}\) mice in vivo, gated dynamic \(^3\)P-MRS of electrostimulated muscles was recorded. These parameters were correlated with force production and postcontraction relaxation time of ATGL\(^{-/-}\) muscle.

MATERIALS AND METHODS

Animals. All of the experimental procedures were approved by the Radboud University Nijmegen Medical Centre Animal Ethics Committee, Nijmegen, The Netherlands.

ATGL\(^{-/-}\) mice, obtained by targeted homologous recombination, as described before (16), were a kind gift from R. Zechner, Institute of Molecular Biosciences, University of Graz, Austria. ATGL\(^{+/+}\) and wild-type (WT) littermate mice were generated by breeding heterozygous mice for the deleted allele. Male ATGL\(^{-/-}\) and control mice (10 \(\pm\) 2 wk) used in this study were housed under a 12:12-h light-dark cycle with controlled temperature (22–24°C). Animals had permanent ad libitum access to mouse standard chow and water.

MRS studies. All in vivo MR studies were performed on a 7 Tesla horizontal magnet interfaced with a clinical console (Clinscan; Bruker Biospin, Ettlingen, Germany). During surgical procedures and MR measurements, mice were anesthetized with 1–2% isoflurane (Phar- macemich, Haarlem, The Netherlands) in a gas mixture of 50:50% O\(_2\)-N\(_2\)O delivered through a face mask. Body temperature was maintained at 37°C using heating pads and monitored rectally with a fluoroptic thermometer (Luxtron 712; Luxtron, Santa Clara, CA). Mouse breathing was monitored in the scanner by using a pressure sensor to record thorax movement (SA Instruments).

Intramyocellular lipid levels were measured in vivo in the tibialis anteriors (TA) of seven ATGL\(^{-/-}\) and nine WT mice by single voxel \(^1\)H-MRS, as described previously (15), with minor adaptations. Briefly, mice were anesthetized and their left legs positioned under a 12:12-h light-dark cycle with controlled temperature (22–24°C). Animals had permanent ad libitum access to mouse standard chow and water.

Data processing of in vivo studies. All \(^1\)H- and \(^3\)P-MR spectra were fitted in the time domain using by AMARES (53) in the jMRUI software package (36). The IMCL level in the TA muscle was calculated from the lipid methylene peak area (1.33 ppm) and expressed relatively to the total creatine (tCr) methyl peak area (3.02 ppm).

The eight time series of \(^3\)P-MR spectra were added retrospectively, and peak areas of inorganic phosphate (Pi), phosphocreatine (PCr), and γ-, α-, and β-ATP signals were fitted by Gaussian line shapes. Absolute concentrations of the phosphorus metabolites were calculated assuming that at rest the mouse muscles have 7.8 mM of ATP (20). Intracellular \(\text{pH}\) was calculated from the chemical shift difference between Pi and PCr resonances (50). The recovery of PCr after the contractions was fitted with a monoexponential function (GraphPad Software, La Jolla, CA). The PCr recovery time (\(\tau_{\text{PCr}}\)) value is the in vivo measurement of skeletal muscle mitochondrial oxidative capacity.

Signals derived from the force transducer were digitized to a sampling frequency of 50 kHz and analyzed with Matlab (Mathworks, Natick, MA), where each contraction was filtered and peak force and half relaxation time [HRT; the time in which the force falls from one-half to one-quarter of the maximal value of each contraction (11, 12)] were determined. Force production was normalized to the cross-sectional area (CSA) of the muscle, determined from the hindlimb axial images obtained prior to the electrostimulation protocol. CSA was determined for the entire hindlimb muscle region by delineating it from the slices where all animals had similar tibial bone area (1.4 \(\pm\) 0.1 mm\(^2\)), using Image J software (NIH Image version 1.44; http://rsweb.nih.gov/ij/).

Skeletal muscle electron microscopy. Ultrastructural morphology was examined using transmission electron microscopy. Muscle tissue sections from extensor digitorum longus (EDL) and the SOL were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). Postfixation was performed in 1% osmium tetroxide in 0.1 M cacodylate buffer (pH 7.4) supplemented with 1.5% potassium ferrocyanide. The samples were then dehydrated and embedded in epon. Ultrathin sections were examined using a Philips CM100 electron microscope. Lipid droplet (LD) diameter and content were determined in EDL and SOL using Image J software.

Fiber typing of TA. The fiber type composition of TA was determined by immunohistochemical analyses in serial cross-cryosections of the muscle that were mounted carefully in uncoated glass slides.
The relative proportion of type I and type II fibers was determined with specific antibody against myosin heavy chain type I (A4.840, diluted 1:25 in PBS; Developmental Studies Hybridoma Bank) combined with Alexa 555-conjugated secondary antibody.

Slides were analyzed using a fluorescence microscope (Model E800; Nikon Instruments Europe, Badhoevedorp, The Netherlands) coupled with a progressive scan color charge-coupled device camera with a (Basler A113 C) color filter (Bayer). Epifluorescence signal was recorded using a fluorescein isothiocyanate excitation filter (465–495 nm) for muscle fiber type and a 4′,6-diamino-2-phenylindole UV excitation filter (340–380 nm) for laminin.

Digital images were captured with a magnification of 120 from at least six different fields of view per muscle section and processed with Lucia version 4.81 software.

Intraperitoneal glucose tolerance test. One week before the MRS measurements, mice were fasted for 6 h and injected intraperitoneally with a bolus of glucose (1.5 g/kg). Blood glucose levels were monitored before and at 15, 30, 60, 90, and 120 min after injection with an Accu-Check performa glucometer (Roche, Manheim, Germany).

Resting and contraction induced-metabolite depletion. Absolute tissue concentrations of high-energy phosphate compounds were determined in resting muscle from ATGL−/− and WT mice, as described before (57). Briefly, muscles were rapidly excised and freeze-clamped, followed by extraction with 1.3 M perchloric acid and neutralization with 1 M potassium bicarbonate. Thereafter, tissue contents of PCr, free Cr, and ATP were determined by high-performance liquid chromatography.

To determine the contraction cost in muscle glycogen content, freeze-clamped samples of contracted and contralateral resting hindlimbs were first powdered under a liquid nitrogen atmosphere. The samples were kept overnight at 4°C. The samples were then centrifuged, the supernatant was discarded, and the pellet was resuspended in 50 mM sodium acetate, pH 4.5. Sixteen units of amyloglucosidase from *Aspergillus niger* (Sigma-Aldrich, Steinheim, Germany) were added to hydrolyze the glycogen into glucose monomers. Samples were incubated overnight at 55°C, and pH was then readjusted to 7. Glucose monomers were quantified using an assay kit (Invitrogen, Breda, The Netherlands). Glycogen levels were expressed in glucosyl units per gram of wet weight.

Plasma levels of glucose, lactate, and FFA were determined from mice that underwent the electrostimulation protocol, using enzymatic colorimetric assays [Invitrogen; Eton Bioscience, Durham, NC; and Wako HR (2), Wako Diagnostics, Neuss, Germany]. Triglyceride levels were determined using a clinical Cardiocheck analyzer (Polymer Technology Systems, Indianapolis, IN).

Statistical analysis. Statistical analyses were performed using GraphPad prism 5.03 (GraphPad Software). Differences between genotypes were evaluated by applying unpaired Student’s t-test or two-way ANOVA with a Bonferroni post hoc test as appropriate. Statistical significance was set at *P* < 0.05.

RESULTS

Relevant characteristics of ATGL−/− and WT mice are presented in Table 1. The average body weight of ATGL−/− mice was higher than their WT littermates (*P* < 0.001). Plasma glucose levels were similar between the genotypes at fed state and after 6 h of fasting. The glucose-tolerant phenotype of the ATGL−/− mice was confirmed by a glucose challenge showing lower plasma glucose levels at 15 (11.7 ± 1.0 mM for ATGL−/− vs. 14.4 ± 0.9 mM for WT mice) and 60 min (7.7 ± 0.5 mM for ATGL−/− vs. 10.6 ± 0.5 mM for WT mice) postbolus injection. ATGL−/− mice also have lower intraperitoneal glucose tolerance test area under the curve (*P* < 0.01).

Table 1. Characteristics of ATGL−/− (n = 14) and WT mice (n = 16)

<table>
<thead>
<tr>
<th></th>
<th>ATGL−/−</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, wk</td>
<td>8 ± 1</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>Body weight, g</td>
<td>25.8 ± 0.3***</td>
<td>23.0 ± 0.4</td>
</tr>
<tr>
<td>Fed glycemia, mM</td>
<td>8.2 ± 0.6</td>
<td>8.9 ± 0.5</td>
</tr>
<tr>
<td>6-h-Fasted glycemia, mM</td>
<td>7.4 ± 0.5</td>
<td>7.7 ± 0.5</td>
</tr>
<tr>
<td>IPGTT AUC, mM/min</td>
<td>1.067 ± 54**</td>
<td>1.277 ± 56</td>
</tr>
</tbody>
</table>

Values are presented as means ± SD; statistical differences indicated with Student’s t-test for *P* < 0.05. ATGL, adipose triglyceride lipase; WT, wild type; IPGTT, intraperitoneal glucose tolerance test; AUC, area under the curve. ***Significantly different from WT *P* < 0.001.

IMCL content and fiber type composition. To evaluate lipid accumulation in ATGL−/− muscles, the EDL and the SOL muscles were analyzed for IMCL content by electron microscopy (Fig. 1A). LDs were larger and more numerous in the SOL muscle (comprised mainly of red oxidative fibers) of ATGL−/− mice compared with WT mice. This observation, although less pronounced, was also valid for the EDL muscles, which have a more glycolytic phenotype (Fig. 1B). Interestingly, it was observed that in ATGL−/− muscles, neighboring fibers have profound differences in LD content and size; fibers with higher mitochondrial content and thicker Z-lines (most likely representing the more oxidative fibers in the EDL) had abundant and fairly large LDs, in contrast to fibers with a low mitochondrial content and thinner Z-lines (a characteristic of glycolytic fibers). In both muscles from the ATGL−/− mice, signs of autophagy, as well as crystal-like structures in the mitochondria, were observed.

The IMCL pool was also assessed in vivo in TA muscle of ATGL−/− and WT mice by 1H-MRS. This muscle was chosen due to its natural alignment with the magnetic field, a prerequisite to resolve the resonances of extra- and intramyocellular lipids (3, 4). To quantify these two lipid pools with localized 1H-MRS, a small voxel (3.1 µl) was positioned inside of the TA muscle. In the spectra of all mice, ATGL−/− and WT, 1H resonances of only IMCL were visible in the methylene and methyl spectral region. Signals of extramyocellular lipids were detected when larger voxels were applied (6.2 µl; see Fig. 2A).

In 1H-MR spectra of ATGL−/− mice, the height of the IMCL peak representing the methylene protons (1.33 ppm) was substantially increased compared with that of the WT mice (Fig. 2A). IMCL content in TA was normalized for tCr (Fig. 2B), and this ratio was approximately six times higher in TA of ATGL−/− mice than in the TA of WT mice (5.6 ± 2.9 vs. 1.1 ± 0.9, *P =* 0.0007).

Changes in muscle fiber type composition can occur in response to skeletal muscle lipid surplus (49). However, this was not observed in the TA muscle of ATGL−/− mice. Irrespective of genotypes, the TA maintained its major composition of type II (fast-twitch) fibers (Fig. 3A). TA muscle from ATGL−/− mice was composed of 81.1 ± 4.8% vs. 18.9 ± 4.8% type II and type I fibers compared with 79.6 ± 5.8% vs. 20.4 ± 5.8% type II and type I fibers in WT (Fig. 3B).
Energy state of the resting skeletal muscle. The \(^{31}\)P-MR spectra acquired in the resting muscle of WT mice showed resonances assigned to Pi, PCr, and ATP (Fig. 4). Resting muscles of ATGL\(^{-/-}\) and WT mice had similar tissue concentrations of PCr and Pi, comparable ratios of PCr/Pi and PCr/ATP, and cellular pH (see Table 2).

In line with the in vivo \(^{31}\)P-MRS data, the biochemical determinations of muscle high-energy metabolites showed no significant differences between the groups. The average ATP concentration in freeze-clamped muscles was 28.7 ± 5.0 \(\mu\)mol/g dry wt for ATGL\(^{-/-}\) mice and 33.7 ± 2.4 \(\mu\)mol/g dry wt for WT mice \((P = 0.17)\). PCr concentration was 66.2 ± 10.7 \(\mu\)mol/g dry wt for ATGL\(^{-/-}\) mice and 75.8 ± 17.6 \(\mu\)mol/g dry wt for WT mice \((P = 0.40)\).

Muscle performance of ATGL\(^{-/-}\) and WT mice upon electrostimulation. Mitochondrial oxidative capacity and muscular performance of ATGL\(^{-/-}\) mice were evaluated in a combined electrostimulation protocol based on in vivo muscle electrostimulation with gated dynamic \(^{31}\)P-MRS (24).

Electrostimulation through the sciatic nerve at a frequency of 150 Hz for 250 ms resulted in fully fused isometric tetanic contractions of the calf muscle complex in both genotypes, ATGL\(^{-/-}\) and WT mice (see Fig. 5A). The stimulation current applied to achieve maximal force in ATGL\(^{-/-}\) muscles was 1.72 ± 0.03 mA, significantly lower than the 2.00 ± 0.06 mA applied to the WT muscles \((P < 0.001)\). This optimal current was then used to stimulate the calf muscle complex to contract every 3 s over 1 min (0.33 Hz). The force produced in the first twitch of the electrostimulation train was substantially lower in ATGL\(^{-/-}\) mice than in the WT mice (0.016 ± 0.001 vs. 0.030 ± 0.005 N/mm\(^2\), \(P < 0.0001\); Fig. 5B). Over the 20 isometric contractions, the force produced by the ATGL\(^{-/-}\) mice was persistently lower than that of the WT mice (Fig. 5C). However, the ATGL\(^{-/-}\) mice had a force decay of 29 ± 1% between the first and the last contraction of the stimulation train, similar to the decay of 27 ± 2% for the WT mice. To test whether differences in force production were due to the different electrostimulation currents applied, ATGL\(^{-/-}\) and WT
mice \((n = 5)\) were subjected to the same optimal stimulation current of 1.92 mA. Also under these conditions, ATGL \(^{-/-}\) mice produced lower force than the WT mice (Fig. 5D).

The muscular relaxation time was determined by the HRT in each tetanic contraction as the time that the force falls from one-half to one-quarter of the maximal value. The HRT of the WT muscles describes a sigmoidal curve and achieved a steady state of relaxation only at the final stage of the stimulation train, around the 17th contraction (see Fig. 5E). The HRT of ATGL \(^{-/-}\) muscles describes an exponential curve, and during the first 10 contractions these animals required more time to relax than the WT muscles \((P < 0.01)\). Muscles from the knockout model achieved a stationary phase of relaxation after the 12th contraction. In general, the percentage change of HRT between the first and the last contraction of the cycle was higher in WT mice \((102 \pm 1\) to \(125 \pm 3\%\)) than in ATGL \(^{-/-}\) mice \((102 \pm 1\) to \(113 \pm 2\%\), \(P < 0.01)\), which suggests that ATGL \(^{-/-}\) mice present muscular fatigue even at the onset of the electrostimulation protocol.

Although differences in muscular force production and HRT between ATGL \(^{-/-}\) and WT mice could theoretically be attributed to muscle mass composition, the levels of tCr and muscle CSA discarded this possibility. The resting ATGL \(^{-/-}\) and WT muscles had similar tCr contents, as determined biochemically, with 49.2 \(\pm 3.5\) vs. 52.4 \(\pm 17.0\) µmol/g dry wt, respectively. Similarly, the muscle CSA determined for the slices with the

Fig. 2. Intramyocellular lipid (IMCL) content in tibialis anterior (TA) of ATGL \(^{-/-}\) and WT mice. A: representative single-voxel (3.1 µl) \(^1\text{H}\) magnetic resonance (MR) spectrum measured in TA of ATGL \(^{-/-}\) and WT mice. Note that in \(^1\text{H}\)MR spectrum acquired with a 6.2-µl voxel, the presence of both extramyocellular lipid (EMCL) and IMCL methylene peaks. B: spectral quantification of IMCL in TA of \(n = 9\) WT (black bar) and \(n = 7\) ATGL \(^{-/-}\) (gray bar) mice. Values are presented as means \(\pm\) SD; statistical differences indicated with Student’s \(t\)-test for \(P < 0.05\). **Significant difference, \(P = 0.0007\) vs. WT. tCr, total creatine.

Fig. 3. Fiber typing of TA muscle in ATGL \(^{-/-}\) and WT mice. A: TA cross-sectional area of ATGL \(^{-/-}\) and WT stained for myosin heavy chain I. Type I fibers (green), type II fibers (not colored), and laminin (blue). B: quantification of type I and type II fibers in TA given in % cells \((n = 7\) for both groups). Values presented are means \(\pm\) SD.
same tibial bone area was 34.8 ± 1.9 mm² for ATGL−/− and 37.7 ± 5.3 mm² for WT mice (P = 0.16).

Contraction-induced metabolic cost. To meet the energy requirements of a working muscle, creatine kinase operates in the first phase of exercise hydrolyzing PCr to Cr and phosphorylating ADP to ATP. The electrostimulation of the calf muscle complex depleted the PCr pool by 46 ± 14 and 41 ± 18% for ATGL−/− and WT mice, respectively. For both genotypes, the experienced PCr depletion during each time point of contraction was correlated with decreased force production. In the ATGL−/− and in the WT mice, these two parameters correlated positively, suggesting that lower PCr matched a lower force production (Pearson correlation of 0.76 and P = 0.04 vs. 0.81 and P = 0.02, respectively, for ATGL−/− and WT mice).

Upon PCr depletion, muscle glycogen becomes an important source of energy. In this study, we could not measure contraction-induced glycogen depletion directly. Instead, calf muscles from the contracted and contralateral resting hindlimb were analyzed afterward to compare glycogen content. In the contralateral resting hindlimb, glycogen levels were different between the genotypes (Fig. 6). The ATGL−/− mice had ~30% less glycogen content than their counterparts (15.8 ± 5.3 vs. 22.2 ± 6.9 μmol glucosyl units/g wet wt, P < 0.05). Independently of the genotype, the glycogen level in the electrostimulated muscles decreased ~50% compared with contralateral nonstimulated muscles. Similarly to the correlation observed between PCr levels and force production during the electrostimulation, the glycogen consumption inferred from the glycogen variation from nonstimulated to stimulated muscles was positively correlated with the change in force (Pearson correlation of 0.78 and P = 0.04 vs. 0.83 and P = 0.01 for ATGL−/− and WT mice, respectively).

After the muscle electrostimulation protocol, WT (n = 5–8) and ATGL−/− (n = 7) mice had similar plasma lactate levels (3.7 ± 1.0 vs. 4.2 ± 1.2 mM, respectively), and plasma glucose was mildly reduced in ATGL−/− mice (5.8 ± 2.7 mM compared with WT mice, 8.6 ± 2.3 mM, P = 0.09). The lipid profile of ATGL−/− mice showed a reduction in FFA (0.42 ± 0.13 mM) compared with WT mice (0.73 ± 0.30 mM, P = 0.03), whereas TG levels were similar between the genotypes (0.98 ± 0.12 vs.1.24 ± 0.52 mM, P = 0.12).

In vivo muscular mitochondrial oxidative capacity. Gated 31P-MRS was used to determine in vivo muscular mitochondrial oxidative capacity of ATGL−/− mice. Figure 7A shows a sequence of 31P-MRS spectra acquired before, during, and after the electrostimulation of the calf muscle complex in one ATGL−/− mouse. Upon stimulation, PCr is dephosphorylated to Pi and free Cr (not visible in 31P spectra), and when stimulation ceases, PCr is resynthesized to basal levels reflecting mitochondrial oxidative phosphorylation (Fig. 7B). Thus the resynthesis of PCr is an in vivo measurement for mitochondrial oxidative capacity. Electrostimulation of calf muscle complex induced a PCr depletion of ~43% and an approximately fivefold increase in Pi levels in both ATGL−/− and WT mice (Table 2). Without significant changes in ATP amplitude during the muscle stimulation, the PCr/ATP ratio decreased similarly to PCr concentration, i.e., ~42% for both groups. In addition, the intracellular pH of the electrostimulated muscles from ATGL−/− and WT mice experienced similar reductions.

After the contraction block, muscle PCr pool was resynthesized to its initial levels. The fitting of the PCr recovery curves was made with a monoexponential function (Fig. 7B) and retrieved the recovery time values expressed graphically in Fig. 7C. The mean value of τPCr was 54.1 ± 6.1 s for the ATGL−/− mice and 58.1 ± 5.8 s for the WT mice. From these τPCr values, we conclude that, under the experimental conditions applied, ATGL−/− and WT mice have comparable mitochondrial oxidative capacities.

DISCUSSION

In this study, we demonstrated that skeletal muscle of ATGL−/− mice accumulates large amounts of IMCL and shows decreased force production and muscle relaxation; however, no apparent decrease of mitochondrial oxidative capacity was detected.

Physiology of the model. Whole body deletion of ATGL hampers TG lipolysis, resulting in decreased FFA levels and in neutral lipid accumulation in various tissues. This is reflected in the body weight of ATGL−/− mice and is due exclusively to an increase in fat mass (18, 30). Glucose disposal in ATGL−/− mice, as well as insulin sensitivity, is improved, and after prolonged fasting, plasma glucose levels decrease substantially (16, 19, 30). At rest, ATGL−/− mice have reduced glycogen stores (~30%) in skeletal muscle, which altogether points toward a reliance on carbohydrates as energy fuel when FFA are not available.

Table 2. Metabolite concentrations and pH calculated from 31P magnetic resonance spectra acquired at rest and after muscle stimulation of ATGL−/− (n = 9) and WT (n = 10) mice

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>ATGL−/− (n = 9)</th>
<th>WT (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PCr]</td>
<td>25.6 ± 7.6</td>
<td>20.1 ± 6.1</td>
</tr>
<tr>
<td>[Pi]</td>
<td>3.5 ± 1.7</td>
<td>2.6 ± 1.9</td>
</tr>
<tr>
<td>[PCr]/[Pi]</td>
<td>11.4 ± 10.5</td>
<td>11.1 ± 9.9</td>
</tr>
<tr>
<td>[PCr]/[yATP]</td>
<td>3.2 ± 1.0</td>
<td>2.6 ± 0.8</td>
</tr>
<tr>
<td>pH</td>
<td>7.14 ± 0.15</td>
<td>7.11 ± 0.10</td>
</tr>
</tbody>
</table>

Values are presented as means ± SD. PCr, phosphocreatine; Pi, inorganic phosphate; yATP, adenosine triphosphate.
Localized 1H-MRS enables a selective determination of the absolute force produced by ATGL WT (black) achieved by electrostimulation for 250 ms at 150 Hz of stimulation frequency. The magnetic field, which essential for a proper discrimination of the 1H resonances of intra- and extramyocellular lipids (3, 21), remains unknown. Regarding the possible “lipotoxic” interaction between IMCL and mitochondrial function in skeletal muscle, the nature of this lipid accumulation is somewhat of importance. It was shown that ATGL−/− skeletal muscles accumulate mainly IMCL as neutral TG (16, 19, 30), whereas ceramide and overall long-chain FA contents were found unaltered or decreased in ATGL−/− SOL muscle compared with WT littermates (30).

Electron microscopy data showed that in ATGL−/− SOL muscle, the number and size of the LD is significantly higher than in fast-twitch muscle EDL. Since the TA muscle is composed mainly of fast-twitch type II fibers (~80%), as is the EDL, an approximately sixfold increase in IMCL pool is potentially an underestimation for muscles with more oxidative types of fibers. Interestingly, the electron microscopy images also revealed that in ATGL−/− muscles, neighboring fibers are affected differently by lipid accumulation. This might be related to fiber phenotype, because greater lipid accumulation in ATGL−/− mice occurs in oxidative rather than in glycolytic fibers (47). Whether this fact is related to ATGL expression in specific muscle fibers, as it happens in human skeletal muscle (21), remains unknown.

Increased IMCL deposition in skeletal muscle of ATGL−/− mice. IMCL quantification in TA of ATGL−/− and WT mice by in vivo 1H-MRS showed that ATGL−/− mice have an approximately sixfold increase in IMCL content. The TA muscle was chosen to determine the level of intra- and extramyocellular lipids since its fibers can be oriented parallel to the magnetic field, which is essential for a proper discrimination of the 1H resonances of intra- and extramyocellular lipids (3, 4). Our results show that the use of small voxels (3.1 μl) in localized 1H-MRS enables a selective determination of the IMCL pool in TA of mice, similar to what has been described for rats (32).

Increased IMCL deposition in skeletal muscle of ATGL−/− mice. IMCL quantification in TA of ATGL−/− and WT mice by in vivo 1H-MRS showed that ATGL−/− mice have an approximately sixfold increase in IMCL content. The TA muscle was chosen to determine the level of intra- and extramyocellular lipids since its fibers can be oriented parallel to the magnetic field, which is essential for a proper discrimination of the 1H resonances of intra- and extramyocellular lipids (3, 4). Our results show that the use of small voxels (3.1 μl) in localized 1H-MRS enables a selective determination of the IMCL pool in TA of mice, similar to what has been described for rats (32).

In vivo mitochondrial oxidative capacity of ATGL−/− mice is similar to WT mice. To evaluate whether skeletal muscle of ATGL−/− mice had impaired mitochondrial function, we assessed mitochondrial oxidative capacity by 31P-MRS after maximal muscle contractions in vivo. Upon cessation of an energy-demanding exercise, skeletal muscle mitochondrial oxidative phosphorylation produces ATP, which is used almost exclusively to rephosphorylate Cr (1, 35). Hence, the PCr resynthesis is an in vivo measurement of mitochondrial oxida-
tive capacity and has been widely applied in human (9, 26, 55) and animal studies (8, 28, 52) (reviewed in Ref. 27).

Skeletal muscle of ATGL−/− mice presented similar PCr to the WT mice, which showed that ATGL−/− muscle had comparable mitochondrial oxidative capacity to their counterparts. Electron microscopy images from SOL and EDL muscles did not show differences between ATGL−/− and WT mice regarding mitochondrial localization or morphology. Others also have shown that ATGL−/− mice on a 4-wk high-fat diet present normal skeletal muscle mitochondrial content. Maximal activities of citrate synthase and β-hydroxyacyl-CoA dehydrogenase, protein content of respiratory chain complexes, and relative expression of mitochondrial biogenesis genes in the skeletal muscle were also found to be similar between 4-wk high-fat-fed ATGL−/− mice and WT mice (18). When FFA are available they are promptly oxidized either ex vivo in isolated muscle preparations (19) or in vivo when supplied by means of diet (18). These studies indicate that mitochondrial β-oxidation in skeletal muscle of ATGL−/− mice is unaffected. In our study, resting or contracting muscles of ATGL−/− mice had normal ATP concentration, PCr/ATP ratio, and τPCr compared with WT mice. Thus, remaining circulating FFA or other substrates (e.g., glucose) seemed to be sufficient to fuel mitochondrial oxidative phosphorylation and sustain the energy requirements of the muscle at rest and during the contractions. It is possible that cardiomyopathy developed by ATGL−/− mice impairs blood flow and O2 supply to the working muscle and, consequently, the activity of mitochondrial oxidative phosphorylation. A deficiency in O2 supply would result in a decrease in intracellular pH and an increase in τPCr; however, no differences were observed in these parameters as measured in vivo by 31P-MRS. Thus, within the 31P-MRS measurement error, the skeletal muscle mitochondrial oxidative capacity of ATGL−/− mice is unaffected.

Our results indicate that factors such as the inability to generate FFA for muscle oxidation, the possible downregulation of genes involved in ATP synthesis, or the cardiac abnormalities of ATGL−/− mice do not operate, at least in appre-

Fig. 7. In vivo skeletal muscle mitochondrial oxidative capacity of ATGL−/− and WT mice. A: example of 1 31P-MRS time series measured in hindlimb of ATGL−/− mouse during the resting/stimulation/recovery protocol. Muscle contraction was achieved by electrostimulation of calf muscles at a frequency of 0.33 Hz. Resonances for Pi, PCr, and ATP are indicated. B: PCr concentration before, during, and after the 60 s of electrostimulation (gray bar). Example of the monoexponential fitting of the WT mice PCr recovery curves, with dashed lines representing 95% confidence interval. C: average PCr recovery times for ATGL−/− (n = 9; gray bar) and WT (n = 10; black bar) mice. Values are presented as means ± SE.
erable extent, to cause damage in mitochondrial oxidative capacity. Thus, mitochondrial dysfunction in ATGL−/− mice seems to be located mainly at the level of cardiac tissue with relative sparing of skeletal muscle.

ATGL−/− mice have reduced force production and increased muscle relaxation time. Despite the fact that overall mitochondrial oxidative capacity was not compromised in ATGL−/− mice, muscle force production and relaxation, determined simultaneously, were impaired significantly.

The calf muscle complex was electrostimulated through the sciatic nerve with optimal current, i.e., the electric current at which the force produced was maximal. In general, in the ATGL−/− mice this current was significantly lower than in WT mice, and yet the force produced was less than half of the force of the WT mice. This difference in force was not due to the lower optimal stimulation current, because when the same near-optimal current was applied, the force generated by the ATGL−/− mice remained reduced compared with WT mice. The contraction-induced PCR depletion in WT and ATGL−/− mice was comparable, which suggests that ATGL−/− mice had higher energy cost per contraction (lower contractile efficiency). In addition, the skeletal muscle of ATGL−/− mice required more time to relax than WT mice.

Our results differ from those reported previously for isolated ATGL−/− muscles, where no differences were observed in force production or in the fatigue rate of EDL and SOL under submaximal contractions (19). The distinct experimental conditions, e.g., stimulation protocol/frequency, as well as the sex of the animals used could account for the converse findings. Huijsman et al. (19) used a stimulation frequency of 60 Hz in a muscle fatigue protocol for EDL and SOL, whereas we used 150 Hz for calf muscle complex (i.e., GAST and SOL) contraction. This stimulation frequency produces the highest force in GAST and SOL (10, 22, 23). When the electrostimulation current was lower than the optimal current, e.g., 1.25 mA, no differences in force between WT and ATGL−/− mice could be detected. This indicates that only when ATGL−/− muscles contract at high force the difference to WT becomes apparent. The presence of defective muscle performance in ATGL−/− is supported by studies that showed that these mice are exercise intolerant, with reduced maximal running velocity and endurance capacity (19, 47).

Contrary to our hypothesis, mitochondrial dysfunction does not explain the poor muscle performance of ATGL−/− mice, so other potential mechanisms must be responsible for this defect. For instance, a lower optimal stimulation current suggests differences in nerve resistance in ATGL−/− mice. This could involve the myelin sheaths that insulate the nerve and conduct electric pulses. Since myelin integrity is highly affected in numerous lipid metabolic disorders (reviewed in Ref. 7), reduction of FFA as in ATGL−/− mice could compromise its function. Another possible explanation is a mechanical contraction defect in the muscle filaments due to excessive IMCL accumulation and extremely large LDs in ATGL−/− muscles. Furthermore, Ca2+ handling at the sarcoplasmic reticulum (SR) may be involved, for instance, caused by lower levels of glycolysis. Reductions in force production, Ca2+ release, and inhibition of contractile protein are closely associated with reduced muscle glycolysis (6, 37) due to tight association of glycogen and glycolytic enzymes to the SR (13, 31). A reduction in glycolysis could lead to a local deficiency in ATP regeneration at the SR, compromising the release of Ca2+ (reviewed in Refs. 2, 14, 34, and 56). And finally, a dysfunction in subsarcolemmal mitochondria, as observed in cardiac muscle of ATGL−/− mice (17), would also lead to compromised SR Ca2+ reuptake, increased muscle relaxation time, and decreased SR Ca2+ load in successive contractions (5, 45). But subsarcolemmal mitochondrial involvement should be limited or compensated by myofibrillar mitochondria, since within the error of the in vivo 31P-MRS measurement the overall mitochondrial oxidative capacity was normal.

In conclusion, our in vivo data confirm that whole body ATGL deletion leads to a significant IMCL accumulation in muscle. Different muscles are affected differently, suggesting that IMCL deposition is fiber type dependent. Despite this lipid accumulation and the inability to release fatty acids from IMCL, the in vivo skeletal muscle mitochondrial oxidative capacity of ATGL−/− mice, measured here upon electrostimulation using 31P-MRS, was comparable with that of WT mice. Electrostimulated muscles of ATGL−/− mice exhibited reduced force production and higher relaxation times than the muscles of WT mice. Because impairment of mitochondrial oxidative phosphorylation does not explain the poor ATGL−/− muscle performance, other mechanisms must be responsible for this defect.

ACKNOWLEDGMENTS

We acknowledge W. A. Coumans for expert technical assistance and Dr. G. Kemp for useful comments.

GRANTS

This research was performed within the framework of the Center for Translational Molecular Medicine (www.ctmm.nl), Project PREDICT (Grant no. 01C-104), and supported by the Dutch Heart Foundation, Dutch Diabetes Research Foundation, and Dutch Kidney Foundation. Additional support was obtained from European Union project fast (MRTN-CT-2006-035801).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

