








uate particle size segregation. Diameter means � SE were
calculated, and particle diameters were plotted in a frequency
distribution (Fig. 4A). The difference was highly significant
[5.579 � 0.17 (n 	 72) vs. 9.522 � 0.1 (n 	 84), P � 0.0001;
2-tailed Student’s t-test]. Despite the use of a postembedding
method chosen to facilitate the accessibility of the antibodies to
the deep cellular compartments such as the cell nucleus, the
tissue integrity was preserved, and the main organelles, includ-
ing rough endoplasmic reticulum, mitochondria, nuclear enve-
lope, heterochromatin, and euchromatin, were easily identified.
The same four pairs of proteins, as mentioned above, were
tested. Omission of the primary antibody validated the speci-
ficity of the immunolabeling. CNTF and its receptor subunits
were observed in both the cytoplasm and the nucleus of the
ARC cells. The nuclear localization represented 57 � 11, 65 �
16, 72 � 12, and 52 � 7% of the total CNTF, CNTFR�, LIFR,
and gp130 immunostaining, respectively (Fig. 4B). The con-
comitant detection of CNTF and its receptor subunits con-

firmed the proximity of CNTF and LIFR (Fig. 4C), CNTF and
gp130 (Fig. 4D), CNTFR� and LIFR (Fig. 4E), and CNTFR�
and gp130 (Fig. 4F) in the cell nucleus. The cytoplasmic
compartment also contained CNTF and its receptor subunits.
This staining was particularly intense near the rough endoplas-
mic reticulum. Moreover, single or double staining of CNTF
and its receptor subunits was also evidenced in nuclear pores
(not shown). Finally, it is of note that an extracellular staining
was observed for CNTF, CNTFR�, and gp130. This soluble
fraction was estimated at 17, 12, and 5% for CNTF, CNTFR�,
and gp130, respectively (Fig. 4B).

We next performed a Western blot analysis from fraction-
ated hypothalamic samples. These biochemical data corrobo-
rated the common nuclear location of CNTF and its receptor
subunits in ARC cells. These experiments showed a mixed
distribution of CNTF, CNTFR�, and gp130 between the cyto-
plasmic (Fig. 5A, lane C) and the nuclear (Fig. 5A, lane N)
compartments and revealed that LIFR and gp130 were also

Fig. 3. CNTF and its receptor subunits are localized in
the cytoplasm and the nucleus of arcuate cells. A–F: the
distribution pattern of CNTF, CNTFR�, LIFR, gp130,
JAK2, and Akt immunoflurescences was reconstructed
in 3D with the FreeD software in ethidium homodimer-2
(EtH-2)-counterstained arcuate cells. The plasmic mem-
brane (gray) and nuclear envelope (red) were delineated,
and the punctiform staining of the different proteins of
interest was represented as green spots. Raw 5-�m-thick
stacks (which represent the sum of 25 0.2-�m-thick
focal planes) are shown as an inset at the bottom of each
reconstruction image. Scale bars 	 5 �m. G: the relative
density of green spots was quantified in the cytoplasm
and the nucleus on 9 distinct cells from 3 different rats.
The data are represented as mean percentages of stain-
ing � SE.
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present at the cell membrane (Fig. 5A, lane M). The fact that
CNTFR� was not detected in the membrane fraction, although
functional after an intraperitoneal injection of CNTF (34, 57),
may be due to its labile glycosyl-phosphatidylinositol anchor-
age to the cell membrane (14). Moreover, JAK2 and Akt were
detected in both cytoplasmic and nuclear fractions (Fig. 5A).
The quantitative variability of cellular distributions between
the three-dimensional reconstructions and the Western blot
may be due to the fact that the analyses were performed on
ARC cells and on whole hypothalamic extracts (which contain
heterogeneous cell populations), respectively. The purity of the
different fractions was verified by detecting different cytoplas-
mic or nuclear proteins, such as �-tubulin and GFAP (cyto-
plasmic) and NeuN (nuclear). Moreover, the examination of
cresyl violet stained fractions under a light microscope con-
firmed the purity and the integrity of the isolated nuclei. The
possibility for CNTF receptor subunits to interact in the cell

nucleus was assessed by coimmunoprecipitations from hypo-
thalamic nuclear fractions. As shown in Fig. 5B, gp130 was
found to coimmunoprecipitate with CNTFR� and LIFR, and
CNTFR� coimmunoprecipitated with LIFR and gp130. The
immunoprecipitation with irrelevant antibodies raised against
Lammer protein kinase and protein-tyrosine phosphatase 1B
confirmed that the immunoprecipitated complexes were spe-
cific (not shown).

CNTF stimulates POMC transcription in isolated hypotha-
lamic nuclei. Because nuclear CNTF was found in ARC
POMC neurons, we assessed its capability to modulate POMC
transcription in isolated nuclei from hypothalamus. A 45-min
incubation with CNTF (1 nM) increased the level of nascent
POMC-RNA significantly (P � 0.05, n 	 5; Fig. 6). By
contrast, CNTF did not alter the transcription of NPY gene, and
leptin treatment had no significant effect on the transcription
level of our genes of interest (Fig. 6).

Fig. 4. CNTF and its receptor subunits are colocalized
in the nucleus of rat arcuate cells; transmission electron
microscopy analysis. A: deposits of 6- or 10-nm immu-
nogold particles were performed to evaluate particle
size segregation. Particle diameters are plotted in a
frequency distribution. B: the relative density of gold
particles in the cytoplasm, the nucleus, and the extra-
cellular space was quantified and represented as %stain-
ing. C–F: CNTF and CNTFR� immunoreactivities were
detected in the nucleus with 10-nm gold particles (ar-
rowheads), whereas LIFR and gp130 immunostainings
were visualized with 6-nm particles (arrows). Scale
bar 	 80 nm.
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CNTF stimulates signaling pathways in isolated hypotha-
lamic nuclei. We next investigated the effects of nuclear CNTF
on the activation of signaling pathways after the incubation of
hypothalamic nuclear extracts from 10 different rats with
CNTF. Western blot analysis using anti-p-JAK2 and anti-p-
Akt antibodies showed that a 10-min incubation with CNTF (1
nM) increased their phosphorylation levels (Fig. 7A). The band
intensity analysis of the blots (after normalization with total

JAK2 or total Akt) evidenced a significant increase of the
JAK2 (P � 0.0005) and Akt (P � 0.005) phosphorylation
levels compared with control conditions (Fig. 7B). It is of note
that phosphorylation of these proteins was not affected by
leptin (10 nM) and was prevented in the absence of ATP.
Moreover, CNTF did not induce the phosphorylation of
ERK42/44 in nuclear extracts, but it induced that of STAT3 in
two out of 10 animals (data not shown). We performed the
same experiment on nuclear fractions extracted from a neuro-
nal cell line (SH-SY5Y), which expressed POMC. These cells
served as a negative control since, unlike gp130, CNTFR� and
LIFR were found mainly in the cytoplasm. The incubation of
SH-SY5Y nuclear extracts with CNTF (1 nM) was not asso-
ciated with increased phosphorylation of JAK2 and Akt (not
shown).

DISCUSSION

Anorexigenic properties of CNTF have conferred to this
cytokine a promising therapeutic potential in the treatment of
obesity. Besides, several studies have tended to show that
endogenous CNTF can also represent a new modulator of
energy homeostasis. Indeed, a null mutation in CNTF gene has
been associated with a significant increase in body mass in
humans (25, 42), and variants in CNTF or CNTFR� gene in
humans have been associated with a lower age at the onset of
eating disorders (22). Furthermore, hypothalamic neurons con-
trolling food intake represent a significant source of CNTF that
varies in inverse ratio with body weight in rats fed a hyperca-

Fig. 5. CNTF and its receptor subunits interact in the
nucleus of hypothalamic extracts. A: fresh hypothalami
were homogenized individually. Then membrane (lane
M), cytoplasmic (lane C), and nuclear (lane N) fractions
were isolated. Their respective content in CNTF,
CNTFR�, LIFR, gp130, JAK2, and Akt was analyzed
by Western blot. The purity of the fractions was con-
trolled by detecting cytoplasmic [�-tubulin and glial
fibrillary protein (GFAP)] and nuclear [neuronal nuclei
(NeuN)] proteins. B: nuclear extracts from rat hypothal-
amus were immunoprecipitated (IP) with anti-CNTFR�,
anti-LIFR, or anti-gp130. The precipitates were then im-
munoblotted with anti-gp130, CNTFR�, or LIFR. Arrow-
heads indicate the level of the immunoblotted receptors.
The other bands may correspond to immunoglobulins.
MW, molecular weight marker; IB, immunoblot.

Fig. 6. CNTF specifically stimulates POMC transcription in hypothalamic
isolated nuclei. Isolated nuclei were obtained from 5 individual fresh rat
hypothalami and subjected to a run-on reaction in the presence or not of CNTF
(1 nM) or leptin (10 nM) for 45 min at 22°C. Nascent RNA were reverse
transcribed, and quantitative RT-PCR based on nuclear run-on technique was
performed. Displayed values are means � SE. *P � 0.05 compared with
control condition with a paired Student t-test; n 	 5 rats.
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loric diet, suggesting a protective action of the cytokine in a
fraction of individuals against diet-induced weight gain (57).
However, how hypothalamic CNTF contributes to the control
of energy balance is still an open question since it lacks a signal
peptide and thus may not be released by the classical exocytose
pathways (49). In the current study, we show for the first time
that CNTF can exert a direct intracrine action by activating its
receptor in the cell nucleus of ARC cells. This leads to the
stimulation of POMC expression and may account for the
anorexigenic effect of the cytokine.

A variety of hormones (i.e., leptin and insulin) and growth
factors (i.e., leukemia inhibitory factor and brain-derived neu-
rotrophic factor) have been shown to operate in an intracrine
mode, and most of them have been reported to translocate and
bind to the cell nucleus (47). However, although CNTF has
been described previously in the nuclear compartment of neu-
rons and glial cells throughout the brain (3–5, 27, 35), the
evidence of CNTF in the nucleus of ARC neurons was unex-

pected. This result was validated not only by the diversity of
the approaches used in our study (immunohisto/cytochemistry,
3D reconstructions, and Western blot from fractionated cells)
but also by the implementation of several control experiments
(omission of the primary antibody, competition with blocking
peptide, and use of CNTF-knockout mice). Moreover, we have
tested several antibodies obtained from different species and
raised against different domains of the protein, and this com-
parative study confirmed CNTF to be present not only in the
cytoplasm but also in the nucleus of ARC cells. The mecha-
nisms underlying the nuclear translocation of CNTF have not
been elucidated yet. CNTF gene can be cotranscribed in mouse
and human with that encoding zinc finger protein 91, a nuclear
proliferative and antiapoptotic factor (Entrez Gene: ZFP91-
CNTF transcription unit) (56), but no nuclear targeting signal
(NTS) was found for CNTF. Nevertheless, alternative NTS-
independent pathways exist for nuclear transport (reviewed in
Ref. 59). In vitro studies have indicated that CNTF could reach
the nucleus by a facilitated transport mechanism in oocytes and
astrocytes (4, 5). Moreover, the fact that we evidenced both
CNTF and LIFR passing through the nuclear envelope by the
same pore could suggest a receptor-mediated translocation, as
demonstrated previously for IL-1, another signal peptide lacking
cytokine (13).

Our data indicate that CNTF receptor subunits are present
not only at the membrane and in the cytoplasm but in the
nucleus of ARC cells as well. This observation is in accord
with several studies showing that intracrine factors can usually
act both at the membrane and in the nucleus (47). Furthermore,
CNTF receptor subunits may associate in the cell nucleus, as
demonstrated using transmission electron microscopy and by
coimmunoprecipitation from nuclear extracts. To our knowl-
edge, among the different CNTF receptor subunits, LIFR is the
only one that has been described previously in cell nucleus,
notably in neurons (17, 20).

Among the different cell types constituting the ARC,
POMC-expressing neurons appeared as a privileged place for
nuclear CNTF to activate its receptor complex. Indeed, all the
partners are present in the nucleus of these neurons, and the
stimulation of nuclear extract with CNTF induced a specific
increase in POMC gene expression. The important transcrip-
tional activity of the activated CNTF receptor complex is
illustrated by the high degree of colocalization between these
proteins and HP1, a positive regulator of active transcription in
euchromatin (33). By comparison, NPY-nascent RNA levels
were not affected by CNTF. In the hypothalamus, POMC
neurons play a crucial role in the regulation of energy homeo-
stasis by controlling food intake, energy expenditure, and
glucose metabolism (45). They integrate nervous and circulat-
ing signals to respond to the energy body requirements and in
turn release the anorexigenic �-MSH toward second-order
neurons located in different hypothalamic regions, such as the
paraventricular nucleus and the lateral hypothalamic area.
Furthermore, POMC neurons have been shown to mediate the
anorexigenic effect of exogenous CNTF. Indeed, CNTF injec-
tion induces an increase in POMC expression (1), and the
ablation of gp130 in POMC neurons prevents CNTF from
activating STAT3 phosphorylation in these neurons and from
inhibiting food intake (32). Thus, here we demonstrate that
endogenous CNTF could take part in the control of energy
homeostasis by regulating POMC gene expression via the

Fig. 7. CNTF stimulates Akt signaling in hypothalamic isolated nuclei. Isolated
nuclei were obtained from individual fresh rat hypothalami and incubated in
the presence or not of ATP (5 �M), CNTF (1 nM), and leptin (10 nM) for 10
min at 37°C. They were then subjected to SDS-PAGE and Western blot
analysis. A: montage of nitrocellulose membranes blotted with an anti-phospho
(p)-JAK2 or an anti-p-Akt before being stripped and blotted a 2nd time with an
anti-total (tot) JAK2 or anti-tot Akt. B: quantification of the blots. The data are
presented as the %control condition � SE. *P � 0.05 and **P � 0.01
compared with control condition with paired Student t-test; n 	 10 rats.

E465NUCLEAR CNTF REGULATES POMC GENE EXPRESSION IN THE RAT ARC

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00388.2011 • www.ajpendo.org

 by 10.220.33.5 on July 22, 2017
http://ajpendo.physiology.org/

D
ow

nloaded from
 

http://ajpendo.physiology.org/


activation of its receptor subunits in the cell nucleus of these
neurons.

The signaling cascades involved in such a regulation need to
be elucidated. According to our results, we can assume that an
Akt-dependent pathway mediates the effect of nuclear CNTF
on POMC transcription. Indeed, we observed JAK2 and Akt in
the nucleus of ARC cells, and the stimulation of nuclear
extracts with CNTF induced the phosphorylation of both pro-
teins. This hypothesis is reinforced by the fact that Akt can be
activated directly in the cell nucleus in different cellular mod-
els (60). Moreover, POMC gene transcription is known to be
regulated by signaling pathways, including JAK2 and Akt
(7, 31). The role of STAT3 cannot be totally excluded since
CNTF induced its phosphorylation in two out of 10 animals.
By contrast, leptin was unable to induce Akt and JAK2 phos-
phorylation in isolated nuclei, indicating a specific effect of
CNTF. Moreover, the presence of CNTFR� and/or LIFR in the
nucleus seems to be necessary to activate these signaling
pathways since in the SH-SY5Y neuroblastoma cell line,
which exhibits none of these subunits in the nucleus, CNTF
failed to activate the JAK2/Akt signaling pathways in isolated
nuclei.

The impact of our data may not be restricted to the compre-
hension of the central control of energy homeostasis but
extended to therapeutic applications. Indeed, the use of a cell
penetrating modified CNTF (48, 58), which crosses the cell
membrane and translocates to the nucleus, can retain all or part
of the CNTF activities without inducing the side effects usually
caused by the cytokine (i.e., fever, cough, asthenia) (12).

In conclusion, our results indicate that endogenous CNTF
could activate its receptor complex in the nucleus of ARC
cells, including POMC neurons. This mechanism, which is not
shared by leptin, may contribute to the regulation of POMC
gene expression and thus to the control of energy homeostasis.
The involvement of such a process in the protective action of
endogenous CNTF against diet-induced weight gain deserves
further investigation. Nevertheless, these data could influence
future drug discovery efforts for the development of new
therapeutic targets against obesity.
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