Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy

A. Ejdesjö, P. Wentzel, and U. J. Eriksson

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

Submitted 22 December 2011; accepted in final form 22 February 2012

Ejdesjö A, Wentzel P, Eriksson UJ. Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metab 302: E1198–E1209, 2012. First published February 28, 2011; doi:10.1152/ajpendo.00661.2011.—The purpose of this study was to investigate the influence of parental transgenerational genetics and maternal metabolic state on fetal maldevelopment in diabetic rat pregnancy. Rats from an inbred malformation-resistant (W) strain, and an inbred malformation-prone (L) strain, were cross-mated to produce two different F1 hybrids, WL and LW. Normal (N) and manifestly diabetic (MD) WL and LW females were mated with normal males of the same F1 generation to obtain WLWL and LWLW F2 hybrids. Maternal diabetes increased malformation and resorption rates in both F2 generations. MD-WLWL offspring had higher resorption rate but similar malformation rate compared with the MD-LWLW offspring. Malformed MD-WLWL offspring presented with 100% agnathia/micrognathia, whereas malformed MD-LWLW offspring had 60% agnathia/micrognathia and 40% cleft lip and palate. The MD-WL dams showed increased β-hydroxybutyrate levels and alterations in concentrations of several amino acids (taurine, asparagine, citrulline, cysteine, glutamic acid, leucine, tyrosine, and tryptophan) compared with MD-LW dams. Fetal glyceraldehyde-3-phosphate dehydrogenase activity and gene expression were more altered in MD-WLWL than MD-LWLW. Fetal gene expression of reactive oxygen species (ROS) scavenger enzymes was diminished in MD-WLWL compared with MD-LWLW. Gliarial cell line-derived neurotrophic factor and Ret proto-oncogene gene expression was decreased in both MD-WLWL and MD-LWLW fetuses, whereas increased bone morphogenetic protein 4 and decreased Sonic hedgehog homolog expression was found only in MD-LWLW fetuses. Despite identical autosomal genotypes, the WL and LW dams gave birth to offspring with markedly different malformation patterns. Together with fetal differences in enzymatic activity and expression of Gapdh, ROS scavengers, and developmental genes, these results may suggest a teratological mechanism in diabetic pregnancy influenced by maternal metabolism and parental strain epigenetics.

Address for reprint requests and other correspondence: A. Ejdesjö, Dept. of Medical Cell Biology, Biomedical Centre, PO Box 571, SE-75123 Uppsala, Sweden (e-mail: andreas.ejdesjo@mcb.uu.se).

Despite optimal clinical care, diabetic pregnancies show two to five times higher frequency of congenital malformations compared with nondiabetic pregnancies (1, 8, 18, 29). The most important predictor for malformations in human diabetic pregnancy is maternal HbA1c concentration in early gestation (47, 79), whereas optimal preconceptional care appears to be the most effective clinical prevention for malformations (29, 58, 65).

Studies of biological pathways underlying diabetes-associated malformations have suggested that the teratological impact of a diabetic environment partly depends on excess of reactive oxygen species (ROS) in the embryo (23) as a consequence of either increased free oxygen radical formation (22, 60, 78), decreased capacity of ROS-scavenging enzymes (9, 31, 63, 70, 72, 80), or both. Previous studies have also suggested an association between increased sorbitol accumulation and dysmorphogenesis in the embryo (26, 32, 34, 67). However, attempting to diminish such accumulation by using inhibitors of aldose reductase (AR) did not prevent the maldevelopment in the offspring (26, 34). Another key enzyme in glycosylation, glyceraldehyde-3-phosphate dehydrogenase (Gapdh), is inhibited in rat embryos subjected to diabetes in vivo and high glucose in vitro (73). This Gapdh inhibition is suggested to result from poly(ADP-ribose)ylation of Gapdh by activated poly(ADP-ribose) polymerase (PARP) (16), attempting to repair diabetes-induced DNA damage (43, 44). The decreased glycolytic flux proximal to Gapdh (16) and the presence of increased ambient glucose levels will yield enhanced flux in the sorbitol (26, 34) and hexosamine pathways (36). An increased availability of proximal glycolytic intermediaries would also increase diacylglycerol (DAG) production and cause activation of several protein kinase C (PKC) isoforms (30, 33), as well as enhancing the flux in the advanced glycation end product (AGE) pathway (14, 27). Several of the consequences of inhibited Gapdh activity may thus contribute to different facets of the teratogenic outcome in diabetic pregnancy.

There are several reports of racial differences in rates of specific malformations, such as an association between Native American origin and increased risk for cleft palate (71). Other studies have addressed the question of predisposing genomic factors for skeletal (12) and cardiac (51) malformations (76). With regard to diabetes in pregnancy, there are several anecdotal tales of familiar clustering of malformations and dysmorphogenesis in women with diabetes. Regarding genetic susceptibility for malformations, it is established that maternal polymorphism in the methylene-tetrahydro-folate-reductase (Mtrfr) gene increases the risk for neural tube defects (NTD) in the offspring (55).

NTD are overrepresented in diabetic pregnancies compared with the nondiabetic population (59). It is also evident that the 677C→T polymorphism in the Mtrfr gene is more common in women with type 1 diabetes than in the background population (42). It is tempting to conclude that such genetic predisposition as in the case of reduced Mtrfr activity in pregestational diabetic pregnancy would increase the risk for NTDs even further, but up to date there are no studies of Mtrfr polymorphism and malformation outcome in diabetic pregnancy available. In experimental work, different susceptibilities to diabetes-induced congenital malformations have been demonstrated in different rodent strains (21, 54, 56). We have previously reported that both the maternal and fetal genome are likely to
affect the rate of diabetes-induced malformations in studies comparing the fetal outcome of diabetic rats of different strains (21). There has also been demonstrated that a specific chromatographic variant of the catalase enzyme (Cs-1a) is present in malformation-prone U rats, whereas another variant of the catalase protein (Cs-1b) is present in rats of an outbred Sprague-Dawley substrain, malformation resistant (H) rats that do not develop malformations in response to maternal diabetes (25). Furthermore, it has been shown that embryonic catalase activity was lower in embryos from normal U rats than in embryos from normal H rats on gestational day 11 (corresponding to gestational week 5 in human pregnancy) and that maternal diabetes augments this difference (9). We sequenced catalase cDNA and the promoter region of the catalase gene in U and H rats (10). Sequence analysis showed one nucleotide mutation in the 5'-untranslated region of the U rat cDNA and a heterozygocity in the U rat gene promoter, indicating different regulation of transcription (promoter) and posttranslational modifications (cDNA mutation) causing the noted catalase differences (10).

Using L, an inbred U rat strain (20% fetal skeletal malformations in diabetic pregnancy), and inbred Wistar Furth rats (no diabetes-inducible skeletal malformations), we performed a global gene linkage analysis of the skeletal malformations. There was a strong association to seven regions on chromosomes 4, 10, 14, 18, and 19 and a weaker association to 14 other loci on several other chromosomes (53). From these regions, 20 candidate genes, and 2 candidate proteins, AR (chromosome 4) and Gapdh (chromosome 10), were chosen for further studies. In earlier experimental work, we have shown that the severity of the diabetic state is important but not completely decisive for the development of malformations in rat diabetic pregnancy (19). The fetal genotype as well as derangements in the uterine environment, i.e., overload of glucose and lipid compounds, disturbed amino acid levels, and enhanced oxidative stress, play different roles in the induction and direction of dysmorphicgenetic pathways. To investigate metabolic and genetic hereditary patterns that may influence fetal development, we evaluated fetal outcome in two different F1 hybrids. These F1 hybrids were created by a crossbreed of two strains, W and L, with low (0%) and high (20%) malformation and resorption frequency, fetal ROS defense, and disturbances in the gene expression of developmental genes in fetal heart and mandible.

MATERIALS AND METHODS

Animals. The “Principles of Laboratory Animal Care” (National Institutes of Health publication no. 85–23, revised 1985; http://grants1.nih.gov/grants/olaw/references/phspol.htm) were followed. The Uppsala Regional Ethical Committee on Animal Experiments approved the research protocol, including all experimental procedures involving animals beforehand. All animals were maintained at an ambient room temperature of 22°C with a 12:12-h light-dark cycle. They were fed a commercial pelleted diet (R36; Analyzen, Linköping, Sweden) and had free access to food and tap water.

Animals were either from a Wistar Furth strain (denoted W; purchased from B&K, Sollentuna, Sweden) or from a locally housed Sprague-Dawley-derived inbred strain, denoted L. The L strain has increased incidence of mandibular and cardiac malformations in diabetic pregnancy (24). W and L female rats were crossed with males from the opposite strain to produce two different F1 hybrids regarding maternal heredity designated WL and LW, respectively. Nondiabetic control and manifestly diabetic female WL rats and female LW rats were caged with nondiabetic males from the same F1 generation overnight. Conception was verified by the presence of sperms in vaginal smear the next morning, which was designated gestational day (GD) 0.

Manifest diabetes (MD) was induced in 3-mo-old female WL and LW rats (denoted MD-WL and MD-LW) by injection of 40 mg/kg streptozotocin (Sigma-Aldrich Stockholm, Stockholm, Sweden) into the tail vein. MD was confirmed within a week after the injection (Freestyle Mini; Abbot Laboratories). A blood glucose value >20 mmol/l was considered to denote MD. Control (N) animals were not injected at all.

At GD 10, venous blood was drawn from the tail vein of pregnant diabetic and nondiabetic rats. Blood was centrifuged, and the serum was used for analysis of glucose/lipid compounds, free amino acids, and isoprostanes.

Animals were killed on GD 20 by cervical dislocation after mild ether anesthesia, and the uterine horns were quickly dissected out. From each horn, fetuses were dissected free from their surrounding membranes and umbilical cord. Fetuses where further weighed, morphologically evaluated with gender determination, and subsequently decapitated. Placentas were dissected free from adherent membranes and wiped on a filter paper to exclude excess fluid and further weighed. Resorptions were counted, weighed, and morphologically evaluated. External malformations of the fetuses were recorded; these were mainly alterations of facial skeleton, i.e., micrognathia, agnathia, and cleft lip and palate (cf. Fig. 1). Fetal liver was collected for isoprostane evaluation. Heart and mandible bone with cartilage were dissected free from surrounding soft tissue and divided into two portions. One part from the heart and mandible was submerged in lysis buffer (Buffer RLT, Qiagen, Hilden, Germany), and the other part was snap-frozen in liquid nitrogen for later determination of enzyme activities.

Laboratory procedures. Serum concentrations of D-glucose, fructose, triglycerides, and cholesterol were measured with a Konelab 30 analyzer (ThermoFisher Scientific, Vantaa, Finland). All analyses were performed with standard reagent kits for D-glucose, cholesterol, glucose (ThermoFischer), and fructosamine (Horiba ABX, Montpellier, France). Serum concentrations of Β-hydroxybutyrate were performed on a Cobas MIRA Multichannel analyzer (Roche Diagnostica, Basel, Switzerland) with reagent kit LiquiColor Procedure No. 2440 (Stanbio Laboratories, Boerne, TX).

After deproteinization of 100 μl serum with 200 μl sulfosalicylic acid, serum concentrations of free amino acids were determined chromatographically using a Biochrom 20 (Biochrom, Cambridge, UK) and a 4.6 × 200 mm high-resolution PEEK column with Ultrapac 8 resin (Biochrom). Norleucine was used as internal standard.

Estimations of 8-iso-PGF2α, in fetal liver and maternal serum were largely performed in accordance with the instructions from the manufacturer (Cayman Chemical, Ann Arbor, MI) as described in previous work (50, 74). The protein content of the liver samples was estimated by the method of Lowry (45) using BSA as a standard.

Total RNA from fetal heart and mandible was isolated with an RNeasy minikit (Qiagen) according to the manufacturer’s instruction for fibrous tissues. To each sample, 1 μl RNase inhibitor (RNA-guard; Amersham Biosciences, Piscataway, NJ) was added. Reverse transcription of mRNA was performed with 1 μg of total RNA using...
a first-strand cDNA synthesis kit (Ready-To-Go You-Prime First-Strand Beads; GE Healthcare, Uppsala, Sweden) according to the manufacturer’s description. The cDNA was diluted to a final volume of 100 μl with RNase-free water.

For analysis of mRNA expression, cDNA was amplified and measured using the MyIQ Optical Thermal Cycler (Bio-Rad Laboratories, Sundbyberg, Sweden). All primers were from TIB Molbiol (Berlin, Germany), and their corresponding sequences are listed in Table 1. For each sample, 1 μl of the final cDNA was amplified in a total volume of 10 μl containing 5 μl of IQ SYBR Green Supermix (Bio-Rad Laboratories), 3 μl of RNase-free water, and 0.5 μl of sense and antisense primers (10 μM each). The PCR procedure was as follows: denaturation and activation step at 95°C for 180 s followed by 36 cycles with denaturation at 95°C for 10 s, annealing at 51–52°C for 10 s, and elongation at 72°C for 15 s. Each PCR was ended with a melting point analysis. A blank control for each primer pair was added in every run. We have previously assessed the stability of expression of various housekeeping genes and found the glucose-6-phosphate dehydrogenase (G6PDH) gene to be constant in embryos exposed to high glucose in vitro or diabetes in vivo (data not shown); therefore, G6PDH gene was chosen as a reference in the real-time PCR protocol. Each fetal sample (heart or mandible) was individually assessed for mRNA levels, and each sample (9–26/group) was run in duplicate. Relative quantification was calculated as the difference between the sample and housekeeping gene crossing point (Cp) values yielding a delta(Cp) value, which was transformed using the formula $2^{-\Delta\text{Cp}}$; however, all statistical calculations, including assessment of mean and SDs, were performed on the nontransformed values.

For enzyme activity analysis, heart and mandible tissue were homogenized on ice by ultrasound disruption (20 kHz, 60 W for 5 s; Vibra Cell; Sonics & Materials, Danbury, CT) in 140 μl of 100 mM triethanolamine buffer (pH 7.6) and centrifuged at 4°C for 40 min at 13,000 rpm.

AR activity was measured with modifications of the method described by Wu et al. (77). All chemicals were purchased from Sigma-Aldrich Sweden. For heart and mandible, 80 μl or 50 μl, respectively, of the supernatant were added to a reaction mixture, giving a final volume of 500 μl containing 0.4 M ammonium sulfate and 0.2 mM NADPH in a 5 mM sodium phosphate buffer (pH 6.3) and preincubated at 37°C for 20 min. The reaction was started by addition of 50 μl of 100 mM dl-glyceraldehyde, followed by 5 min in a spectrophotometer (UVMini 1240; Shimadzu, Kyoto, Japan) at 340 nm. The difference in absorbance over time in the linear part of the reaction (ΔA) was used for determination of enzyme activity. Enzyme activity was calculated as (ΔA_{620})

Table 1. Primer sequences for semiquantitative real-time PCR

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5’ to 3’</th>
<th>Tm, °C</th>
<th>Product Size, bp</th>
<th>Annealing, Temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G6PDH</td>
<td>Fw</td>
<td>GTC ATG CAG AAC CAC CTC CT</td>
<td>56.8</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>ACA TAC TGG CCA AGG AGG AG</td>
<td>56.6</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Fw</td>
<td>CGG CAG GAT CTC TCC ATT GT</td>
<td>55.9</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>CTC CAT AGG CTC CCA AGT GT</td>
<td>56.9</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Fw</td>
<td>GGC ATT GCT CTC AAT GAC AA</td>
<td>54.9</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TGT GAG GGA GAT GCT CAG CG</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td>CuZnSOD</td>
<td>Fw</td>
<td>AAG CCG TAG ACC AGT TGT G</td>
<td>57.2</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>CCA GCT TCCCAAAG CAT GCC</td>
<td>56.3</td>
<td></td>
</tr>
<tr>
<td>MnSOD</td>
<td>Fw</td>
<td>GGT GGA GAA CCC AAA GGA GA</td>
<td>57.5</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>AGG AGT GGA ATA AGG CCT GT</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td>EC-SOD</td>
<td>Fw</td>
<td>CTC CAC AGG CGC CTC TAG</td>
<td>57.7</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GGT GGA CCT AAG AGG AGG AAG</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td>Catalase</td>
<td>Fw</td>
<td>TTA TGT TAC CTC ACA GCC TGG T</td>
<td>55.4</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GTG TGT TGT GTG TGT TGG TAG</td>
<td>54.9</td>
<td></td>
</tr>
<tr>
<td>GPx-1</td>
<td>Fw</td>
<td>TGA GAA GTG CGA GGT GAA TG</td>
<td>55.5</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>AAC ACC GTC TGG ACC TAC CA</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td>GPx-2</td>
<td>Fw</td>
<td>TGC CCT ACC CCT ATG AGG AC</td>
<td>56.1</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GGA GAT TCC TAG GCT GAG CA</td>
<td>55.2</td>
<td></td>
</tr>
<tr>
<td>GDNF</td>
<td>Fw</td>
<td>CCC GAA GAT TAT CCT GAC GA</td>
<td>55.0</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TAG CCC AAA CCC AAG TCA GT</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>SHH</td>
<td>Fw</td>
<td>TTA AAT GCC TTG GCC ATC T</td>
<td>55.6</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TTA CAC AGA GCA GTG GAT GC</td>
<td>55.7</td>
<td></td>
</tr>
<tr>
<td>Ret</td>
<td>Fw</td>
<td>CTG GAG CCA ACA AGG AGA AG</td>
<td>56.7</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>CCA CAT GCT CAA AGA CG</td>
<td>55.6</td>
<td></td>
</tr>
<tr>
<td>BMP-4</td>
<td>Fw</td>
<td>GGT TAC CTC AAG GGA GTG GA</td>
<td>56.6</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>AGT CCA AGA GGA CAT GGT</td>
<td>56.8</td>
<td></td>
</tr>
</tbody>
</table>

Tm, melting temperature; G6PDH, glucose-6-phosphate dehydrogenase; AR, aldose reductase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CuZnSOD, copper zinc superoxide dismutase; MnSOD, manganese superoxide dismutase; EC-SOD, extracellular superoxide dismutase; GPx-1 and 2, glutathione peroxidase-1 and -2, respectively; GDNF, glial cell line-derived neurotrophic factor; SHH, sonic hedgehog homolog; Ret, Ret proto-oncogene; BMP-4, bone morphogenetic protein-4; Fw, forward; Rev, reverse.
Table 2. Fetal outcome at gestational day 20 in N and MD WL and LW rats

<table>
<thead>
<tr>
<th>Offspring</th>
<th>N-WLWL</th>
<th>N-LWLW</th>
<th>MD-WLWL</th>
<th>MD-LWLW</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of litters</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>No. of implantations</td>
<td>73</td>
<td>60</td>
<td>204</td>
<td>196</td>
</tr>
<tr>
<td>Implantations/litter</td>
<td>12.2 ± 0.4</td>
<td>10.0 ± 0.5</td>
<td>11.3 ± 0.3</td>
<td>12.3 ± 1.0</td>
</tr>
<tr>
<td>Male wt, g</td>
<td>3.63 ± 0.06</td>
<td>3.74 ± 0.13</td>
<td>2.95 ± 0.06a</td>
<td>3.06 ± 0.08b</td>
</tr>
<tr>
<td>Female wt, g</td>
<td>3.56 ± 0.06</td>
<td>3.70 ± 0.12</td>
<td>2.88 ± 0.06a</td>
<td>2.89 ± 0.08b</td>
</tr>
<tr>
<td>Placental wt, g</td>
<td>0.52 ± 0.02</td>
<td>0.55 ± 0.02</td>
<td>0.58 ± 0.02</td>
<td>0.57 ± 0.01</td>
</tr>
<tr>
<td>Male wt, g</td>
<td>0.54 ± 0.02</td>
<td>0.54 ± 0.02</td>
<td>0.59 ± 0.02</td>
<td>0.57 ± 0.01</td>
</tr>
<tr>
<td>No. of normal, %</td>
<td>71 (97)</td>
<td>58 (97)</td>
<td>175 (86)</td>
<td>177 (90)</td>
</tr>
<tr>
<td>No. of resorptions, %</td>
<td>2 (3)</td>
<td>2 (3)</td>
<td>20 (10)a</td>
<td>9 (5)b</td>
</tr>
<tr>
<td>No. of malformed, %</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>9 (100)</td>
<td>8 (80)</td>
</tr>
<tr>
<td>No. of female, %</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>No. of male, %</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>9 (100)</td>
<td>6 (60)</td>
</tr>
<tr>
<td>No. of micro/agnathia, %</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>No. of cleft lip and palate, %</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Data are means ± SE. N, nondiabetic; MD, manifestly diabetic; WL, offspring of W female and L male; LW, offspring of L female and W male. ANOVA, Fisher’s exact test, and χ²-statistics: *P < 0.05 vs. N-WLWL; **P < 0.05 vs. N-LWLW; ***P < 0.05 vs. MD-WLWL; and ****P < 0.05 vs. females of same experimental group.

Results

Fetal outcome. There was no difference in the number of implantations between any of the groups (Table 2). Fetal weight was decreased by maternal diabetes in both MD-WLWL and MD-LWLW litters compared with their respective nondiabetic control group. Female MD-WLWL offspring weighed less than corresponding male offspring, whereas female MD-LWLW offspring only tended to be smaller (0.05 < P < 0.10) than corresponding male offspring. No effect of strain, maternal diabetes, or fetal gender was found regarding placental weight (Table 2).

MD-WLWL offspring had a higher resorption rate (10%) compared with N-WLWL offspring (3%). MD-WLWL offspring showed no differences in resorption rate compared with N-LWLW offspring, 5 and 3% respectively. There was also no difference in resorptions rate between N-WLWL and N-LWLW. MD-WLWL offspring had thus higher resorption rate compared with MD-LWLW offspring. Of the MD litters examined, 6 of 18 MD-WLWL litters and 5 of 16 MD-LWLW litters presented with malformed fetuses.

MD-WLWL had increased malformation frequency (4%) compared with N-WLWL (0%). MD-LWLW had increased malformation rate (5%) compared with N-LWLW (0%). Furthermore, malformed MD-WLWL offspring presented with 100% agnathia/micrognathia, whereas malformed MD-LWLW offspring had agnathia/micrognathia and cleft lip and palate with a frequency of 60 and 40%, respectively (P = 0.05). Malformation types are displayed in Fig. 1B.

Maternal metabolic state. The maternal serum concentration of triglycerides, fructoseamine, cholesterol, and β-hydroxybutyrate in nondiabetic and manifestly diabetic WL and LW rats is depicted in Table 3. MD increased maternal serum glucose and fructoseamine levels in both MD-WL and MD-LW rats. N- and MD-WL rats had lower serum cholesterol than N- and MD-LW rats, respectively. No differences were
found regarding serum levels of triglycerides. Furthermore, MD-WL and MD-LW rats had higher serum β-hydroxybutyrate levels than their respective nondiabetic control, whereas MD-WL rats had higher serum β-hydroxybutyrate compared with MD-LW rats.

Serum concentrations of amino acids are depicted in Fig. 2. MD-WL compared with N-WL rats (Fig. 2A) had increased levels of threonine, asparagine, proline, alanine, citrulline, valine, isoleucine, leucine, and tyrosine and a decrease in the levels of glutamic acid and lysine. MD-LW compared with N-LW rats (Fig. 2B) had increased levels of asparagine, glutamic acid, glutamine, proline, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine and arginine and decreased levels of ornithine and lysine. In addition, MD-WL dams (Fig. 2C) had increased levels of citrulline, cystine, leucine and tryptophan as well as decreased levels of taurine, asparagine, glutamic acid and tyrosine compared with MD-LW dams.

8-Isoprostone. Serum levels of 8-isoprostone (Fig. 3A) were increased by maternal diabetes in both MD-WL and MD-LW rats compared with their respective nondiabetic control group. No differences in serum 8-isoprostone levels were found between the strains or by comparing manifestly diabetic rats that gave birth to nonmalformed or malformed litters (Fig. 3C).

Hepatic concentrations of 8-isoprostone are shown in Fig. 3, B and D. MD-WLWL and MD-LWLWL offspring had higher levels of 8-isoprostone compared with N-WLWL and N-LWLWL offspring, respectively (Fig. 3B). No difference in hepatic 8-isoprostone levels was found between N-WLWL and N-LWLWL offspring or between MD-WLWL and MD-LWLWL. Furthermore, no differences were found between nonmalformed and malformed offspring of manifestly diabetic rats, although a numerical difference (P = 0.11) was observed between nonmalformed and malformed MD-LWLWL offspring (Fig. 3D).

AR activity and gene expression. There was no effect of maternal diabetes or parental strain on cardiac or mandibular AR activity in WLWL and LWLWL offspring (Fig. 4A and B). However, cardiac AR gene expression tended to be decreased by maternal diabetes in MD-WLWL and MD-LWLWL offspring (0.05 < P < 0.10) compared with nondiabetic offspring (Fig. 4C). Furthermore, malformed MD-WLWL offspring had a decreased mandibular gene expression of AR compared with nonmalformed MD-WLWL offspring (Fig. 4D).

Gapdh activity and gene expression. Maternal diabetes had no effect on cardiac Gapdh activity in WLWL and LWLWL offspring (Fig. 5A). However, cardiac Gapdh gene expression was decreased in both MD-WLWL and MD-LWLWL offspring compared with N-WLWL and N-LWLWL, respectively (Fig. 5C). There were no differences in cardiac Gapdh activity or gene expression between nonmalformed and malformed offspring of MD-WLWL and MD-LWLWL, respectively (Fig. 5, B and D).

Mandibular Gapdh activity was higher in N-WLWL compared with N-LWLWL offspring (Fig. 5A). Furthermore, mandibular Gapdh activity was increased in MD-WLWL offspring in relation to MD-LWLWL fetuses (Fig. 5A). Malformed MD-WLWL offspring had decreased mandibular activity and gene expression of Gapdh compared with nonmalformed MD-WLWL offspring (Fig. 5B and D).

ROS scavengers. Maternal diabetes decreased cardiac gene expression of copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), extracellular superoxide dismutase (ECsOD), and catalase in both MD-WLWL and MD-LWLWL fetuses (Fig. 6, A, B, C, and D). Furthermore, cardiac gene expression of glutathione peroxidase-1 (Gpx1) was decreased in MD-WLWL fetuses compared with N-WLWL (Fig. 6E). Cardiac Gpx2 gene expression was increased in MD-LWLWL fetuses compared with N-WLWL and MD-WLWL (Fig. 6F). Maternal diabetes decreased mandibular gene expression of ECsOD and Gpx1 in MD-WLWL offspring but not in MD-LWLWL offspring (Fig. 6, C and E). Mandibular Gpx2 gene expression was decreased in both MD-WLWL and MD-LWLWL offspring (Fig. 6F). Furthermore, mandibular gene expression of CuZnSOD, MnSOD, ECsOD, and Gpx1 was lower in MD-WLWL compared with MD-LWLWL fetuses (Fig. 6, A, B, C, and E). When comparing gene expression of scavengers between nonmalformed and malformed fetuses of the same MD group, we found that the MD-LWLWL fetuses displayed a decreased cardiac and mandibular Gpx2 gene expression compared with nonmalformed MD-LWLWL fetuses (data not shown).

Developmental genes. Maternal diabetes decreased cardiac gene expression of Ret proto-oncogene (Ret) in both MD-WLWL and MD-LWLWL offspring (Fig. 6G). Cardiac bone morphogenetic protein 4 (Bmp4) expression was unchanged by diabetes in MD-WLWL offspring, whereas it was increased in MD-LWLWL (Fig. 6H). Cardiac Bmp4 expression was lower in malformed MD-LWLWL fetuses compared with nonmalformed MD-LWLWL (Fig. 6I).

Mandibular Ret gene expression was lower in both N-WLWL and MD-WLWL offspring compared with N-LWLWL and MD-LWLWL offspring, respectively (Fig. 6G). Maternal diabetes decreased mandibular gene expression of glial cell line-derived neurotrophic factor in both MD-WLWL and MD-LWLWL fetuses but decreased mandibular Sonic hedgehog homolog (Shh) expression only in MD-LWLWL (Fig. 6, J and K). Mandibular Shh expression was higher in MD-WLWL compared with MD-LWLWL fetuses.

Table 3. Serum concentration of glucose and lipid compounds at gestational day 10 in N and MD WL and LW rats

<table>
<thead>
<tr>
<th></th>
<th>N-WL</th>
<th>N-LW</th>
<th>MD-WL</th>
<th>MD-LW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-glucose, mmol/l</td>
<td>7.8 ± 0.2</td>
<td>7.2 ± 0.3</td>
<td>36 ± 1a</td>
<td>34 ± 1b</td>
</tr>
<tr>
<td>S-fructosamine, μmol/l</td>
<td>209 ± 1</td>
<td>214 ± 3</td>
<td>301 ± 3a</td>
<td>294 ± 3a</td>
</tr>
<tr>
<td>S-cholesterol, mmol/l</td>
<td>1.7 ± 0.03</td>
<td>2.0 ± 0.1a</td>
<td>1.8 ± 0.02</td>
<td>1.9 ± 0.04a</td>
</tr>
<tr>
<td>S-triglycerides, mmol/l</td>
<td>1.1 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>S-β-hydroxybutyrate, mmol/l</td>
<td>0.07 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.11 ± 0.02</td>
</tr>
</tbody>
</table>

Data are means ± SE. ANOVA: aP < 0.05 vs. N-WL; bP < 0.05 vs N-LW; and cP < 0.05 vs MD-WL.
Mandibular gene expression of Bmp4 and Shh was decreased in malformed MD-WLWL fetuses, although there was a tendency \((0.05 < P < 0.10)\) of decreased mandibular Shh expression in MD-LWLW (Fig. 6, I and L). Finally, mandibular Ret expression was higher in malformed MD-LWLW fetuses compared with nonmalformed MD-LWLW (data not shown).

DISCUSSION

The most intriguing result in the present study was the marked variations in fetal dysmorphology between the WLWL and LWLW offspring in diabetic pregnancy. The question why two similar (almost identical) fetal genotypes exposed to two similar (almost identical) maternal environments gives rise to
nonidentical fetal phenotypes is fundamental in the following discussion.

Maternal factors. One important aspect of the teratogenic mechanism would be the influence of maternal factors, i.e., the maternal genome and metabolic state, on the dysmorphogenetic process. In the present study, the WL and LW dams differ only in the origin of mitochondria and possible autosomal imprinting. The mitochondria are of the W and L types in WLWL and LWLW offspring, respectively. In previous studies, the W and L mitochondrial genomes have been found to contain several sites of polymorphism. However, no clustering of fetal dysmorphogenesis was found to be associated with W or L mitochondrial identity (53). In the present study, W and L specific genomic imprinting may also be important, although we have no clear appreciation of the methylation pattern in the WLWL and LWLW offspring.

The maternal metabolic state is different between WL and LW dams. Interestingly, the major markers of severity of diabetic state, serum glucose, fructosamine, cholesterol, triglycerides, and two of the branched-chain amino acids (valine and isoleucine), are remarkably similar in the pregnant MD-WL and MD-LW rats. The identifiable differences between the pregnant MD-WL and MD-LW rats are the serum concentrations of β-hydroxybutyrate (both increased compared with N, but MD-WL > MD-LW) and increased serum leucine, the third branched-chain amino acid, as well as different levels of taurine in serum. In previous experimental work, β-hydroxybutyrate has been identified as a potent teratogenic agent in diabetic pregnancy (6, 37, 62). Further differences were observed with regard to amino acid levels, where the MD-WL dams had lower serum taurine, asparagine, glutamic acid, and tyrosine as well as higher citrulline, cystine, leucine, and tryptophan compared with MD-LW dams. The teratogenic association with increased branched-chain amino acids has been shown earlier (66, 75). Altered levels of amino acids have been associated with teratogenic effects in chicken such as tryptophan (49) and leucine (4). Ketoisocaproate, an intermediate metabolite of leucine, was teratogenic in rat embryo culture (22), inducing increased mitochondrial ROS production. Taurine, which was decreased in MD-WL dams compared with MD-LW pregnant rats, is an aminosulfonic acid not incorporated into proteins. In diabetic pregnant rats, taurine is decreased in both maternal and fetal serum (2). Some known beneficial effects of taurine in diabetes are decreased oxidative stress (38) and decreased vascular dysfunction (38, 48). Furthermore, taurine supplementation to low-protein-fed rats restored insulin secretion in fetal endocrine pancreas (13). Taurine has also been shown to facilitate in vitro preimplantation development in mice (17). However, there is little known of the effects of taurine supplementation in diabetic embryopathy. In one study of hyperglycemic mice, taurine supplementation decreased the NTD rate (46). The metabolic differences found in the present study are thus likely to be involved in the different teratogenic processes in MD-WLWL and MD-LWLW offspring.

Embryonic factors. Another important aspect of diabetic teratogenicity would be the effect of embryonic factors, mainly the embryonic genetic setup. The embryonic genotype differs interindividually in the WLWL and LWLW offspring because of stochastic division and distribution of W and L autosomes in F1 germ line meiosis. This genomic diversity in the offspring renders embryos with a range of 0–100% W and L genome,
whereas the mean distribution over several litters reaches a distribution of 50% W and 50% L genome. This hereditary equilibrium would in theory lead to similar fetal outcome in the two F2 generations; however; the higher resorption rate in MD-WLWL and the different craniofacial malformations in the LWLW offspring need further consideration. As with WL and LW dams, the WLWL and LWLW offspring differ with regard to their mitochondrial heredity and genomic imprinting, which are W and L strain specific in WLWL and LWLW fetuses, respectively. Furthermore, the W and L origin of X and Y sex chromosomes is different between WLWL and LWLW offspring, which may be of importance since there is a preponderance of female gender among the malformed offspring in both MD-WLWL and MD-LWLW. This may implicate the X chromosome(s) in the teratological, and also developmental, processes, and a search for genes enabling (diabetic) embryopathy should be considered. In one study, pregnant women with preexisting diabetes were reported to be more likely to give birth to a malformed male infant than a female infant with an odds ratio of 3.5 (28), although other recent studies showed no gender differences (18). As discussed above, different polymorphism in W and L mitochondria might lead to disturbed mitochondrial function in a hyperglycemic environment. The influence of parental genotype and maternal diabetes on gene expression patterns of ROS scavenging enzymes and key developmental genes are similar in the F2 offspring in this present work compared with F1 offspring in previous experiments (19). Furthermore, MD-WLWL offspring show a decreased mandibular gene expression of CuZnSOD, MnSOD, ECSOD, and Gpx1 compared with MD-LWLW offspring. This difference of gene expression and fetal outcome (i.e., higher resorptions) in WLWL offspring indicates a possible dependency on paternal L genome in the WL dams. This may suggest an epigenetic mechanism for the disturbed embryogenesis. Experimental studies in diabetic mice have shown a decrease in gene expression of several embryonic chromatin-modifying factors involved in transcriptional regulation as well as increased variability in gene expression in diabetes-exposed embryos, suggesting a disturbed epigenetic signal for gene expression in diabetic embryopathy (61). In the present study, the weight of evidence supports an influence of the embryonic genetic setup on the teratogenic outcome in diabetic pregnancy.

Maternal and embryonic interactions. The malformation rate was 4 and 5% in MD-WLWL and MD-LWLW offspring. In earlier work, MD-WL and MD-LW offspring had 0 and 9% malformations, whereas parental MD-WW and MD-LL diabetic pregnancies presented with 0 and 17% malformation rates (19). The protection from diabetes-induced malformations in MD-WL offspring (compared with MD-LW offspring) was hypothesized to be caused mainly by maternal protective factors, i.e., the W uterine milieu. In contrast, the increase of malformation rate from 0% in MD-WL offspring to 4% in MD-WLWL offspring indicates a loss of protective W maternal factors, since the maternal genome goes from 100% W to 50% W. On the other hand, the reduction of malformation rate from MD-LL fetuses (17%) to MD-LW fetuses (9%) may be viewed as the result of a gene dilution effect in the offspring.

Fig. 4. Enzyme activity of aldose reductase (AR) (A and B) in heart and mandible at gestational day 20 in WLWL and LWLW fetuses from N (open bars) and MD (filled bars) WL and LW rats. Data are means ± SE (ANOVA and Student’s t-test). Gene expression of AR (C and D) in heart and mandible at gestational day 20 in WLWL and LWLW fetuses from N (open bars) and MD (filled bars) WL and LW rats. AU, arbitrary units. Transformed means ± SE (ANOVA and Student’s t-test). Significance: *P < 0.05, MD fetuses with no malformations vs. MD fetuses with malformations of the same strain (D).
i.e., less L genome in the embryo, exposed to the same intrauterine milieu (100% L). The noted decrease of malformation rate from 9% in MD-LW fetuses to 5% in MD-LWLW fetuses further elucidates the importance of protective W genome in the mother, in this case L vs. LW maternal genome. A similar effect of inductive and protective genomes on the outcome of diabetic pregnancy was previously noted in a study of outbred diabetic rats (21).

The occurrence of cleft-lip palate (CLP) in MD-LWLW offspring, a malformation not seen before in W- or L-derived diabetic pregnancies, needs further consideration. In humans, the incidence of CLP is diverse among different ethnic groups, and sex differences are also evident regarding the different forms of CLP (15). Beside embryonic genetic predisposition, maternal (39) and environmental (7, 35) factors have been implicated as a causative mechanism for CLP. Pregestational diabetes or obesity increases the risk for development of CLP in the human fetus (1, 11, 64). Embryonic genetic disturbances also imply several mechanisms for CLP. Indeed, Bmp4 mutations as well as disturbed expression patterns of Bmp4 and Shh (68, 69) have been shown to be involved in the pathogenesis of CLP. Tp63 knockout embryos with CLP (69) present with increased Bmp4 and decreased Shh expression in the facial processes concordant with the findings of increased Bmp4 and decreased Shh gene expression in MD-LWLW offspring in this present study. Experiments with different lines of inbred F1 hybrids from C57Bl/6J and A/J mice show that susceptibility genes for teratogen-induced orofacial clefts is resident on both C57Bl/6J and A/J genome, although only the A/J strain exhibits the induced malformations (20). The same association for susceptibility regions on both resistant (W) and susceptible (L) rat genome was noted in earlier work (53). Genotypic alterations of the two genes clf1 and clf2 in the A/WySn mice are both required for spontaneous CLP development, but maternal factors are also strongly influencing the penetrance (40). Wnt9b gene modification has been shown to be the cause to the clf1 mutation (41, 57).

A previous embryo transfer study (52) of CLP-susceptible CL/Fr strain embryos transferred to CL/Fr or C57BL dams showed that the embryonic genotype was important for CLP malformations to occur but also that the uterine environment in CL/Fr dams had an important role for the frequency of CLP and fetal outcome. In our previous work with WL and LW F1 offspring, a combination of embryonic susceptibility and maternal milieu appeared as the most plausible explanation for differences in fetal outcome (19), a notion applicable also on the results in the present study.

In conclusion, as a general assessment, the differences in maternal milieu are not solely responsible for the differences in fetal outcome between the WL and LW pregnancies. Differences in fetal genetic setup are likely to be of importance, although the precise influence cannot be ascertained at present. The possibility, therefore, that the fetal genetic setup enables the malformations to occur, given a maternal diabetic state of a certain severity, appears reasonable and should be further scrutinized in the future.
ACKNOWLEDGMENTS
We are indebted to Ing-Marie Mörsare for valuable technical support.

GRANTS
Financial support was obtained from The Ernfors Family Fund, The Swedish Diabetes Association, The Novo Nordisk Foundation, and The Swedish Research Council Grant No. 54X-21117.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS
Author contributions: A.E., P.W., and U.E. conception and design of research; A.E. performed experiments; A.E. and U.E. analyzed data; A.E., P.W., and U.E. interpreted results of experiments; A.E. prepared figures; A.E.

Fig. 6. Gene expression of reactive oxygen species (ROS) scavenging enzymes (A–F) and developmental genes (G–L) in heart and mandible at gestational day 20 in WLWL and LWLW fetuses from N (open bars) and MD (filled bars) WL and LW rats. CuZnSOD, copper zinc superoxide dismutase; MnSOD, manganese superoxide dismutase; ECSOD, extracellular superoxide dismutase; Gpx-1 and 2, glutathione peroxidase-1 and -2, respectively; Ret, Ret proto-oncogene; Bmp4, bone morphogenetic protein 4; Gdnf, glial cell line-derived neurotrophic factor; Shh, sonic hedgehog homolog. Transformed means ± SE (ANOVA and Student’s t-test). Significance: *P < 0.05 vs. N; #P < 0.05 vs. WLWL (A–C, E–H, and K) and ‡P < 0.05, MD fetuses with no malformations vs. MD fetuses with malformations of the same strain (I and L).
REFERENCES

Downloaded from http://ajpendo.physiology.org/ by 10.20.32.246 on October 21, 2017

E1208 METABOLIC AND GENETIC FACTORS IN DIABETIC EMBRYOPATHY

