Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907

Louise Fritsche,1 Sabine S. Neukamm,1 Rainer Lehmann,1 Elisabeth Kremmer,2 Anita M. Hennige,1 Andrea Hunder-Gugel,3 Martin Schenk,2 Hans-Ulrich Häring,1 Erwin D. Schleicher,1 and Cora Weigert1

1Division of Endocrinology, Diabetes, Angiology, Nephrology, Pathobiotechnology and Clinical Chemistry, Department of Internal Medicine, University Tuebingen, Member of the German Center for Diabetes Research; 2Institute of Molecular Immunology, Helmholtz Center, Munich, Member of the German Center for Diabetes Research; and 3Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Germany

Submitted 9 July 2010; accepted in final form 16 November 2010

Insulin receptor substrate 2; extracellular signal-regulated kinase 1/2; binding domains but might be implicated in the ERK- and mTOR-involved in the regulation of the adjacent PI 3-kinase and Grb2 binding domains, respectively. Using monoclonal phosphosite-specific antibodies, we demonstrated the phosphorylation of both serines after stimulation of Fao hepatoma cells with insulin, anisomycin, or phorbol esters. Phosphorylation of both sites was a late and prolonged event during insulin treatment and was also detected in liver tissue of insulin-treated as well as refed mice. Inhibition and siRNA-mediated knockdown of mTOR but not of ERK1/2 and mTOR: studies on the function of Ser675 and Ser907.

In vitro kinase assays using specific IRS-1 and IRS-2 share 40% of sequence homology with a predominant IRS-protein in the muscle and adipose tissue, while IRS-2 is most important in the β-cells (60) and the detrimental whole body knockout of IRS-2, which results in overt diabetes, has been cured with transgenic islets expressing IRS-2 (20). The complete knockout of IRS-2 also suggested a prominent role of IRS-2 in hepatic metabolism (34, 50), and the liver-specific deletion of IRS-2 indicates that IRS-1 and IRS-2 have rather complementary functions rather than one or the other being the dominant isoform in the liver (14, 48). Recent data imply that the transient upregulation of IRS-2 expression during fasting and in the early postprandial state regulates the complementary function of IRS-1 and IRS-2 in hepatic insulin signaling (27).

The distribution of the insulin signal via the PI3K/PKB cascade and the ras/MAP kinase pathway toward the numerous downstream effectors is regulated by posttranslational modifications of IRS-1 and IRS-2. The phosphorylation on tyrosine residues (19) upon insulin receptor activation is the prerequisite for interaction with downstream signaling partners containing an src homology region 2 (SH2) domain, most importantly the p85 subunit of PI3-kinase (PI3K) (5, 32, 45) and the adaptor protein Grb2 (43, 53). In addition, many kinases phosphorylate IRS-1 on a large number of different serine/threonine residues. These phosphorylations regulate the interaction of IRS-1 with the insulin receptor (1), with serine/threonine kinases such as PKC (56, 59) or their intracellular distribution and degradation (41, 46). Most of the phosphoserine/threonine sites of IRS-1 are implicated in the downregulation of the insulin signal leading to insulin resistance when IRS-1 serine/threonine kinases are chronically activated (7, 25). Some reports also demonstrate that this modification can enhance insulin signal transduction (11, 30, 57). Beyond the regulation of the intensity and duration of the insulin effects the serine/threonine phosphorylation of IRS proteins might determine the diversification of the insulin signal by modifying the docking sites for protein interactions (59).

IRS-1 and IRS-2 share 40% of sequence homology with a unique kinase regulatory loop binding domain (KRLB) in IRS-2 (39), which appears to be involved in limiting the tyrrosine phosphorylation of this protein (62). The modification of IRS-1 by serine/threonine phosphorylation has been extensively studied, and the importance for the regulation of physiological and pathophysiological functions of IRS-1 is undoubtedly. Considerably less is known about the serine/threonine phosphorylation of IRS-2. In vitro kinase assays using PKCζ have shown that, despite the high homology of serine residues, substrate specificity of serine kinases toward IRS-1...
and IRS-2 might exist (29). Thr348, which is a functional homolog to Ser307 of IRS-1, has been identified as an in vitro target of JNK (44), and the use of IRS-2 alanine mutants indicated the sequential phosphorylation on Ser488 and Ser498 by JNK and GSK-3 (42). The concomitant mutation of five putative PKC-dependent phosphoryserine sites to alanine (serines 303, 343, 362, 381, 480) proved to be protective against cytokine-induced apoptosis in murine β-cells (18). To the best of our knowledge, no site-specific serine/threonine phosphorylation of IRS-2 has been demonstrated in cell culture models or in vivo using phospho-site-specific antibodies.

We developed monoclonal phosphospecific antibodies of IRS-2 based on a screening for potential serine/threonine phosphorylation sites with online available bioinformatic tools. After a prescreening for positive hybridoma clones, we focused on Ser675 and Ser907 (corresponding to mouse IRS-2 sequence), since both sites are in close proximity to functional tyrosine residues: Ser675 lies within the IRS-2-specific KRLB domain and is adjacent to a PI3K binding motif (pY671/MXM), and Ser907 is adjacent to the Grb2 binding domain of IRS-2 (pY911/IN) (45, 62). We studied the regulation of these phosphorylations in hepatoma cells and primary human hepatocytes and in vivo in mouse liver tissue and used serine-to-alanine (loss-of-function) mutants to investigate their insulin-regulated function.

MATERIALS AND METHODS

Materials. Fao rat hepatoma cells and BHK cells were from The European Collection of Cell Cultures (ECACC), HEK 293 cells were from ATCC (Wesel, Germany). Cell culture media and supplements were from LONZA (Basel, Switzerland). Rapamycin, SP-000125, anisomycin, insulin, 12-O-tetradecanoylphorbol 13-acetate (TPA), and cycloheximide were obtained from Sigma (Munich, Germany). G-418 was from Biochrom (Berlin, Germany). Wortmannin, PD-98059, and lactacystin were from Calbiochem (Schwalbach, Germany). Human recombinant TNFα was from R&D Systems (Wiesbaden-Nordenstadt, Germany). Phosphatase inhibitor mix contained 10 mM NaF, 5 mM sodium pyrophosphate, 10 mM sodium orthovanadate, and 10 mM β-glycerophosphate from Sigma (Munich, Germany). Protease inhibitor cocktail (Complete) was obtained from Roche (Mannheim, Germany). Protein A-sepharose was from GE Healthcare Europe (Munich, Germany). Mouse IRS-2 coding sequence was kindly provided by M. F. White (Boston, MA).

IRS-2 protein antibody (06-506), IRS-1 protein antibody (06-248) and p85 antibody (06-195) were from Millipore (Schwalbach, Germany), the Akt/PKB protein and PKCδ antibody were from BD Transduction laboratories (Erembodegem, Belgium). Antibodies against phosphotyrosine, phospho-Akt/PKB Thr308 and Ser473, phospho-p70S6K Thr389, p70S6K, phospho-p44/42 (ERK1/2) Thr202/Tyr204, p44/42 (ERK1/2), phospho-IRS-1 Ser101, and β-actin were from Cell Signaling Technology (Frankfurt, Germany). The antibody against mTOR/FRAP1 was obtained from Santa Cruz Biotechnology (Santa Cruz, CA). The antibody against Grb2 was from Abcam (Cambridge, UK).

Rat monoclonal phosphospecific IRS-2 antibodies were generated by immunization of Lou/C rats with peptides corresponding to the mouse IRS-2 sequence surrounding Ser675 and Ser907 (Fig. 1) by use of standard procedures (33). IRS-10 5E4 (rat IgG1) and IRS-14 9C12 (rat IgG2a) are used in this study.

Cell culture, transfection, and treatments. Fao cells were kept in RPMI 1640 medium supplemented with 10% FCS, 100 U/ml penicillin, and 100 μg/ml streptomycin. For experiments the cells were starved overnight in FCS-free medium and subsequently treated with various substances as described in RESULTS. Primary human hepatocytes were isolated from liver tissue obtained from therapeutic hepatectomies using a two-step collagenase perfusion protocol as described (40). The cells were plated onto collagen, cultured in Hepatocyte Maintenance Medium (Provitro, Berlin, Germany), and stimulated in serum-free DMEM with 4.5 g/l glucose supplemented with 2 mM glutamine, 1 mM sodium pyruvate, and 0.1 mM nonessential amino acids. All other cell lines were cultured in DMEM with 4.5 g/l glucose supplemented with 10% FCS, 100 U/ml penicillin and 100 μg/ml streptomycin, 2 mM glutamine, 1 mM sodium pyruvate, and 0.1 mM nonessential amino acids. Cells were serum starved overnight in the same medium as the growth medium but without FCS. BHK cells were transiently transfected using Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany) according to the manufacturer’s instructions. Twenty-eight hours after transfection, cells were starved in serum-free medium overnight and treated with 100 nM insulin for various time points. HEK 293 cells were stably transfected to express wild-type and mutated IRS-2 proteins using Lipofectamine, and stable clones were selected with G418.

Site-directed mutagenesis. Mutation of serine sites of mouse IRS-2 to alanine was generated using the Stratagene QuikChange XL Site-Directed Mutagenesis method (Stratagene, La Jolla, CA). Positive clones were verified by sequencing.

Cell lysis, immunoprecipitation, and Western blotting. Cells were lysed in 175–300 μl of lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EDTA, 10% glycerin, 1% Triton X-100, containing protease and phosphatase inhibitors) per well. Total protein (100–250 μg) was used for immunoprecipitation. Immunoprecipitated proteins or 100 μg of protein of total extracts were separated by SDS-PAGE (7.5%), and Western blot analysis was performed as described elsewhere (58).

Gene expression. Total RNA was extracted from cells by use of an RNasy miniKit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA (1 μg) was used for reverse transcription-PCR with random hexamer primers using the Transcriptor First Strand cDNA Synthesis kit (Roche, Mannheim, Germany) according to the manufacturer’s instructions. Expression of rat IRS-2 and rat β-actin was measured by real-time quantitative PCR on a Light Cycler 480 System (Roche) using FastStart DNA-MasterSYBR Green I (Roche) or the Quantifast SYBR Green PCR Kit (Qiagen). For β-actin the following primer pair was used: sense, AGC CAT GTA CGT AGC...
CAT CC; antisense, CTC TCA GCT GTG GTG GTG AA. For IRS-2 the QuantiTect primer assay Rn IRS2_1_SG was used (Qiagen).

Small interfering RNA. Small interfering (si)RNA oligonucleotides targeting rat mTOR/FRAP1 (NM_019906), rat p70 S6K1 (NM_031985), rat ERK1/ MAPK3 (NM_017347), and rat ERK2/MAPK1 (NM_053842) were designed, synthesized, and annealed at Dharmacon Research (Lafayette, CO). An unrelated siRNA targeting firefly luciferase was used as control in all experiments. Transfection was performed by electroporation using the Gene Pulser II with capacitance extender (Bio-Rad Laboratories, Hercules, CA) and 4-mm cuvettes. Fao cells (3.5 \times 10^6) were electroporated with 100 nM siRNA in 100 \mu l of RPMI with 1% FCS at 290 V and 450 F.

Animal studies. Four-week-old male C57Bl/6 wild-type mice were obtained from Charles River Laboratories. They were maintained on a normal 12:12-h light-dark cycle and kept on a standard chow diet for 8 wk. For in vivo stimulation, a bolus of human insulin (2 IU/mouse for 10 min) was injected into the inferior vena cava of overnight-fasted mice. Controls received an equal amount of diluent. In a fasting/refeeding experiment, 13-wk-old wild-type mice were fasted over 16 h and afterwards had access to chow for 5 h. The control animals were killed immediately after the fasting period. Liver tissue was removed and homogenized at 4°C in lysis buffer [50 mM Tris, 150 mM NaCl, 1% Triton X-100, containing protease inhibitor Complete (Roche) and phosphatase inhibitors]. Homogenates were allowed to solubilize for 30 min on ice and clarified by three subsequent centrifugation steps at 16,000 g for 10 min. For detection of IRS-2 phosphorylation, supernatants containing 1 mg of total protein were used for immunoprecipitation. All procedures were approved by the local Animal Care and Use committee.

Statistical analysis. Data are presented as means ± SE from three to five independent experiments. Statistical analyses were performed with SPSS for Windows v. 15.0.1 (SPSS, Chicago, IL) using a Mann-Whitney U-test for not normally distributed variables and Student’s t-test for normally distributed variables. A result was considered significant if \(P < 0.05 \).

Fig. 2. Phosphorylation of Ser675 and Ser907 in cell culture and in vivo. A: Fao cells were treated with 100 nM insulin (ins), 50 ng/ml IGF-I, 5 nM TNF, 0.5 \mu M TPA or 5 \mu g/ml anisomycin (aniso) for 30 min. After stimulation, cells were lysed and analyzed by 7.5% SDS-PAGE and immunoblotted with monoclonal phosphosite-specific Ser675 (top) or Ser907 (bottom) antibody. Blots were reprobed with a polyclonal IRS-2 antibody. B: BHK cells were transiently transfected with empty vector (con), IRS-2 wild-type (IRS-2 wt), IRS-2 675Ala, or IRS-2 907Ala and treated with 100 nM insulin, 0.5 \mu M TPA, or 5 \mu g/ml anisomycin for 30 min. Lanes separated by lines were from the same gel. C: HEK 293 cells were transiently transfected with empty vector (con), IRS-2, or IRS-1 and treated with 100 nM insulin for 30 min. Lanes separated by lines were from the same gel. D: Fao cells were treated with 100 nM insulin or 0.5 \mu M TPA for 30 min. IRS-1 and IRS-2 were immunoprecipitated (IP) with polyclonal antibodies. E: primary human hepatocytes were stimulated with 100 nM insulin or 0.5 \mu M TPA for 30 min. F: male C57Bl/6 mice were fasted overnight and injected intravenously with 2 IU insulin. Liver samples were obtained after 10 min of insulin treatment. IRS-2 was immunoprecipitated and immunoblotted (IB) with phosphosite-specific antibodies. Shown are immunoblots of liver extracts obtained from one unstimulated and two insulin-treated mice. G: male C57Bl/6 mice were fasted overnight and refed for 5 h. Liver samples were obtained immediately after fasting or after the refeeding period. Shown are immunoblots of liver extracts obtained from two fasted and two refed mice. Phosphorylation intensity was quantified based on scanning densitometry of immunoblots and normalized for IRS-2 protein (mean ± SE; \(n = 4 \). *\(P < 0.05 \) vs. fasted mice).
RESULTS

Identification of potential serine/threonine phosphorylation sites. We studied first which serine kinase activators are able to induce the phosphorylation of Ser\(^{675}\) and Ser\(^{907}\) of IRS-2 in Faò rat hepatoma cells by using the generated monoclonal phosphospecific antibodies. Both sites were phosphorylated by stimulation with insulin, IGF-I, TPA, and anisomycin, whereas TNF\(\alpha\) induced only a weak phosphorylation at Ser\(^{675}\) and Ser\(^{907}\) (Fig. 2A). Although 1 nM insulin was sufficient to induce the phosphorylation of both sites (data not shown), 100 nM was used in further studies to achieve a maximum activation of downstream insulin signaling.

To test the specificity of the antibodies, baby hamster kidney (BHK) cells were transiently transfected with mouse IRS-2 wild-type (IRS-2 wt), IRS-2 Ala\(^{675}\), and IRS-2 Ala\(^{907}\) and stimulated with 100 nM insulin, TPA, and anisomycin for 30 min. The phospho-site-specific antibodies clearly recognized phosphorylated IRS-2 wt, whereas only a weak signal was detected in cells expressing the IRS-2 Ala mutants (Fig. 2B). Despite the high homology in the sequences of IRS-2 and IRS-1 adjacent to both phosphorylation sites (Ser\(^{632}\) and Ser\(^{887}\), respectively; Fig. 1), the antibodies showed no or only marginal reaction with ectopic expressed IRS-1 in HEK 293 cells (Fig. 2C). Moreover, the antibodies only recognized immunoprecipitated IRS-2 in the samples obtained from insulin- and TPA-treated Faò cells but not immunoprecipitated IRS-1 (Fig. 2D). The phosphorylation of Ser\(^{675}\) was also detected in primary human hepatocytes after stimulation with insulin and TPA (Fig. 2E; phosphorylation of Ser\(^{907}\) was not studied). After demonstrating that endogenous as well as transiently overexpressed IRS-2 is phosphorylated on Ser\(^{675}\) and Ser\(^{907}\) in different cell culture models, we investigated whether these phosphorylations occurred in vivo as well. Insulin-treated mice showed a marked increase in the phosphorylation of both sites in liver tissue (Fig. 2F). Moreover, the phosphorylation of both sites in the liver was significantly induced when fasted mice were refed for 5 h (Fig. 2G). Of note, the total IRS-2 protein amount was clearly reduced by refeeding in the liver, as has been described earlier (27).
Insulin-induced Ser675 phosphorylation is mediated by mTOR. The insulin-induced phosphorylation kinetics of Ser675 were studied in Fao cells. Insulin induced a strong phosphorylation that was maximal after 60 min and continued for at least 240 min (Fig. 3A). We also observed phosphorylation of this site after 8 h of insulin stimulation (data not shown). To identify the kinase(s) responsible for phosphorylation of Ser675, we used a set of different pharmacological inhibitors in Fao cells. Inhibition of mTOR with rapamycin and inhibition of PI3K with wortmannin clearly reduced the insulin-dependent phosphorylation of Ser675 (Fig. 3B). To investigate this further, we used siRNA to silence either mTOR (Fig. 3C) or its target kinase p70S6K1 in Fao cells (Fig. 3D). The protein level of mTOR could be clearly reduced, leading to abolished insulin-induced p70S6K1 phosphorylation (Fig. 3C). The knockdown of mTOR also resulted in a significantly reduced basal and insulin stimulated Ser675 phosphorylation of endogenous IRS-2 (Fig. 3C). In contrast to the treatment with rapamycin (Fig. 3B), the electrophoretic mobility of IRS-2 was not markedly influenced, suggesting some remaining mTOR kinase activity. The knockdown of p70S6K1 in Fao cells was efficiently, resulting in undetectable protein bands in Western blot and leading to reduced Ser1101 phosphorylation of IRS-1, which has been identified as a p70S6K1-dependent phosphorylation site (51) (Fig. 3C). However, the insulin-induced 675-phosphorylation of IRS-2 was not influenced (Fig. 3D). These data indicate that mTOR is involved in the phosphorylation of this site.

Phosphorylation of Ser675 has no effect on downstream insulin signaling but influences IRS-2 degradation. To study the function of Ser675, we used HEK 293 cells stably expressing wild-type IRS-2 (IRS-2 wt) and the insulin receptor (IR) or HEK 293 cells stably expressing the IRS-2675AAla mutant (IRS-2675A) simulating the unphosphorylated state, and the IR. We could not detect differences between these cells in the insulin-induced activation of Akt/PKB or ERK1/2 signaling (Fig. 4A). Moreover, the 675Ala mutation had no effect on the insulin-induced phosphorylation of IRS-2 tyrosine residues and on the association of IRS-2 and p85 as observed in IRS-2 or p85 communoprecipitation experiments (Fig. 4, B and C). The Ser675 phosphorylation was present in IRS-2 wt coprecipitated with p85 (Fig. 4C), demonstrating that the IRS-2 fraction that is relevant for insulin-induced effects is Ser675 phosphorylated. A basal IRS-2-p85 association was detected using IRS-2-p85 coimmunoprecipitation experiments (Fig. 4, A and C). The 675A mutation had no effect on the phosphorylation of this site.

The mTOR-mediated serine phosphorylation of IRS-2 might be implicated in the degradation of the protein. We studied the insulin-induced degradation of IRS-2 in Fao cells and observed a reduction of IRS-2 protein after 120 and 240 min of stimulation (Fig. 4D), which was completely prevented in the presence of rapamycin or the proteasomal inhibitor lactacystin. Of note, the insulin-induced pronounced retardation of the electrophoretic mobility of IRS-2 was inhibited in IRS-2675AAla-expressing cells (Fig. 4D), demonstrating that the IRS-2 fraction with corre-
The trophoretic mobility of IRS-2, which was visible in Fao cells (Figs. 3A and 5A) as well as in liver lysates (Fig. 2F) and after refeeding (Fig. 2G), was also blocked by rapamycin and lactacystin. Insulin also reduced IRS-2 mRNA expression (Fig. 4E), which, however, was not prevented by lactacystin and rapamycin, indicating that the insulin-induced decrease of IRS-2 protein is caused by both proteasomal degradation and reduced gene expression. Furthermore, the data led to the assumption that an mTOR-dependent modification of IRS-2, namely phosphorylation of Ser^{675}, could be involved in the insulin-induced degradation. In the HEK 293 cells stably expressing IRS-2 wt and IRS-2^{675A} inhibition of protein synthesis with cycloheximide enabled the visualization of IRS-2 degradation, which otherwise is not possible in this cell model (Fig. 4F). In contrast to Fao cells, insulin treatment did not further reduce the half-life of the wild-type protein (Fig. 4F), but the disappearance of IRS-2 was clearly delayed when Ser^{675} was mutated to Ala with a comparable reduction after 6 h (Fig. 4G), supporting the hypothesis that phosphorylation of Ser^{675} might be involved in an accelerated degradation of the protein.

Insulin-induced Ser^{607} phosphorylation is dependent on ERK. To investigate the regulation of IRS-2 Ser^{607}, we first studied the insulin-induced phosphorylation kinetics in Fao cells. Insulin treatment resulted in slowly increasing phosphorylation of Ser^{907} with maximal phosphorylation after 60 min and continuing for at least 240 min (Fig. 5A), demonstrating that the phosphorylation of Ser^{907} is a rather late event in insulin signaling. Using different pharmacological inhibitors revealed that neither the inhibition of mTOR nor PI3K nor JNK showed any effect on insulin induced Ser^{907} phosphorylation (Fig. 5B). Furthermore, 24-h pretreatment with 0.1 μM TPA, which downregulates classical and novel PKC isoforms (e.g., PKCδ),
but not atypical PKC isoforms, did not prevent the insulin-induced Ser907 phosphorylation (Fig. 5C). However, treatment with the MEK1-specific inhibitor (PD-98059) to inhibit the activation of the MAP kinases ERK1/2 led to a strong reduction of the insulin-induced Ser907 phosphorylation (Fig. 5C), and siRNA-mediated knockdown of these MAP kinases resulted in an impaired insulin-induced Ser907 phosphorylation, despite the incomplete knockdown of ERK2 (Fig. 5D). These data imply that the MAP kinases ERK1 and -2 are involved in the insulin-induced phosphorylation of IRS-2 Ser907, which moreover lies within a MAP kinase consensus sequence (PXpS/pT) (Fig. 1).

Abrogation of Ser907 phosphorylation does not influence the binding of Grb2 to IRS-2. Ser907 is located in close proximity to Tyr911, which is proposed to bind Grb2 after phosphorylation. Therefore, we tested whether the phosphorylation of Ser907 influences the interaction of IRS-2 with Grb2 and thus the activation of ERK1/2 as well. HEK 293 clones were generated that stably express IRS-2/907Ala/H11001 and in addition clones that stably express IRS-2 with an amino acid exchange of Tyr911 to phenylalanine (911Phe). The insulin-induced total tyrosine phosphorylation of IRS-2, the association of IRS-2 with p85, and the downstream signaling toward Akt/PKB and GSK-3 were not different in these cells (Fig. 6, A–C). The phosphorylation of Ser907 was present in p85-coprecipitated IRS-2 wt after insulin treatment (Fig. 6B). The association to p85 was also detected in unstimulated IRS-2 907Ala-expressing cells (Fig. 6, A and B), but no influence of this effect on insulin-induced signal transduction was observed. The association of IRS-2 with Grb2 was clearly and significantly induced by insulin treatment in IRS-2 wt-expressing cells, whereas it was greatly diminished in IRS-2 911Phe-expressing cells (Fig. 6, D and E). No difference was observed between wt and 907Ala-expressing cells. The phosphorylation of Ser907 was present in IRS-2 coprecipitated with Grb2, even though the degree of phosphorylation was less than the phosphorylation of total IRS-2 when similar amounts of IRS-2 protein were compared, as is shown exemplarily in Fig. 6F. Despite the pronounced reduction of the Grb2 binding to IRS-2 911Phe, the activation of ERK1/2 phosphorylation by insulin was not affected in these cells and indistinguishable from wt- and 907Ala-expressing cells (Fig. 6G). Further studies in HEK 293 cells stably expressing IR or IRS-2 alone or in combination demonstrated that elevated levels of IR protein alone were sufficient for the insulin-induced ERK1/2 phosphorylation, which was not further amplified in the presence of
IRS-2 wt or IRS-2 907Ala (Fig. 6H). These results indicate that the phosphorylation of Tyr911 is crucial for the insulin-induced binding of Grb2, but this interaction is dispensable in HEK 293 cells for downstream activation of ERK, and not prevented by phosphorylation of the adjacent Ser907.

DISCUSSION

In this study, we provide evidence that insulin induces the phosphorylation of two novel IRS-2 serine phosphorylation sites, Ser675 and Ser907. Both phosphorylation sites have been previously described using quantitative phosphoproteomics in HeLa cells (13). We demonstrate here the phosphorylation of both sites using monoclonal phosphospecific antibodies, which do not detect the homologous sites of IRS-1 but the phosphorylation in human, mouse, and rat IRS-2. Both serine residues were phosphorylated in different cell culture models and in vivo, indicating the physiological importance of these sites. Phosphorylation of Ser675 and Ser907 are late events detected after sustained insulin stimulation of cells (60–240 min) and found after 5 h of refeeding in mouse liver. The kinases responsible for the phosphorylation, mTOR and ERK1/2, have been implicated in the attenuation of the insulin signal. These data point to an involvement of both sites in the feedback control of insulin signal transduction.

Ser675 is homologous to Ser632 of IRS-1 (Ser636 in human IRS-1), which has been shown to be a target of mTOR as well (16, 53), but activation of p70S6K1 (41, 54) and ERK (8) could also induce the phosphorylation of Ser632. Unregulated hyperphosphorylation of Ser632 has been associated with insulin resistance in obese mice (24, 52, 54). While p70S6K1 or ERK1/2 were not responsible for the insulin-dependent phosphorylation Ser675 of IRS-2 in Fao cells, these kinases could be involved in the phosphorylation of this site in vivo, for example, in the livers of refeed mice.

The findings of our study suggest that Ser675 phosphorylation might be involved in IRS-2 degradation, which is an important feature of IRS-2 regulation. The fast degradation of IRS-2 protein in the liver after onset of refeeding has been described in mice (27), and it has been speculated that this is the prerequisite to shifting the insulin signaling toward IRS-1, which is suspected to be dominant for postprandial insulin signaling (17). In this context, the IRS-2 downregulation via degradation seems to be essential for hepatic nutrient homeostasis. Moreover, diminished protein levels of IRS proteins were found in liver and muscle in different animal models of obesity, insulin resistance, and diabetes, suggesting a function in the pathogenesis of these diseases (2, 23, 24). In the present study, Ser675 is phosphorylated by mTOR, and the inhibition of this kinase abolished insulin-induced degradation of endogenous IRS-2, which has also been reported previously (37). Furthermore, in livers of refeed mice, a robust Ser675 phosphorylation was observed concomitantly with a pronounced IRS-2 protein decrease, possibly suggesting the relevance of this site
for degradation (Fig. 2G). To specifically address the function of phospho-Ser675 for IRS-2 degradation, we used the nonphosphorylated IRS-2 675Ala mutant in stably transfected HEK 293 cells. In this model, IRS-2 degradation could only be detected when protein translation was blocked with cycloheximide, but under these conditions a prolonged half-life of IRS-2675Ala was visible. The degradation of IRS proteins involves their ubiquitinylation (38). Two flanking lysines of Ser675 (Lys667 and Lys683) have a probability for this modification (35). It can be speculated that the phosphorylation of IRS-2 on Ser675 is a prerequisite for the ubiquitination of either one or both of these lysine residues, thus facilitating the proteasomal degradation. Studies that aimed to prove the relevance of the phosphorylation of the homologous Ser632 for IRS-1 degradation failed (53), whereas the importance of mTOR and mTOR-dependent, but also mTOR-independent, serine phosphorylation could be demonstrated (15, 41, 46). With the pronounced effect of rapamycin on the electrophoretic mobility of IRS-2 taken into consideration, which indicates a major blockade of posttranslational modifications, it appears likely that further mTOR-dependent phosphorylations of other yet unknown residues of IRS-2 and other modifications are also important for the degradation of IRS-2 protein. The relevance of Ser675 phosphorylation for the development of insulin resistance and diabetes will have to be investigated in suitable animal models, e.g., mice fed a high-fat diet.

Ser675 is adjacent to a p85 binding motif (pY671MPM), and an inhibitory effect on the association with p85 has been described for the homologous Ser632 and its neighboring Ser635 of IRS-1 (53). Phosphorylation of Ser675 appeared not to
influence the interaction of IRS-2 with the insulin receptor as determined by IRS-2 tyrosine phosphorylation (Fig. 4B, top), although Ser675 is located within the KRLB domain. However, the region of the KRLB domain that binds directly to the insulin receptor (602–637) (62) is not in close proximity to Ser675, and phosphorylation of Ser675 might therefore have no direct effect on IRS-2-insulin receptor interaction. Thus phosphorylation of Ser675 does not appear to have direct effects on insulin signal transduction but plays a role in the degradation of the protein.

In contrast to Ser675, which has a well-described corresponding serine residue in IRS-1, the function of the IRS-1 homologous residue to Ser907, Ser887 (corresponding to mouse IRS-1) (26, 64) is unknown. The serine kinase ERK1/2, which is responsible for insulin-induced phosphorylation of Ser907, has also been recognized as an IRS-1 kinase that is involved in the negative regulation of insulin signaling by phosphorylation of Ser612 (12, 31) and Ser632 (8). Therefore, it could be speculated that the ERK-mediated phosphorylation of IRS-2 might also be involved in the attenuation of insulin’s effects.

On the other hand, IRS-2 has been shown to be crucial for the transduction of the insulin signal into the MAP kinase pathway in myotubes (9, 22) and β-cells (60). Tissue-specific knockout of IRS-2 in the liver of mice strongly reduced insulin-induced ERK phosphorylation (14). Although these studies showed that IRS-2 is an important mediator of the insulin/IGF-I signal into the MAP kinase pathway in different tissues, the molecular cascade transducing the insulin signal toward ERK via IRS-2 is less clear. It has been considered that the binding of Grb2 to the Grb2 consensus motif (pYI/VN) located at Tyr911 is responsible for IRS-2-mediated ERK activation (45). Abrogation of the binding of Grb2 to IRS-1, which is dependent on the phosphorylation of the homologous tyrosine residue Tyr891, leads to reduced ERK activation (55). Thus, we hypothesized that phosphorylation of Tyr911 is responsible for the insulin-induced binding of Grb2 to IRS-2 and the subsequent activation of the ERK pathway, and that insulin-induced, ERK-dependent phosphorylation of adjacent Ser907 might interfere with the Grb2-IRS-2 association as a negative feedback regulation.
Expression of the unphosphorylated 911Phe mutant in HEK 293 cells could demonstrate that the phosphorylation of Tyr911 is necessary for the association of Grb2 to IRS-2. The unphosphorylated 907Ala mutant did not influence the Grb2-IRS-2 interaction, and phosphorylation of Ser907 did not block the interaction since the IRS-2 associated to Grb2 is phosphorylated on Ser907. A minor effect could not be excluded because the degree of Ser907 phosphorylation of Grb2-bound IRS-2 is less compared with total IRS-2. Moreover, IRS-2 has no apparent effect on the insulin-induced ERK activation, which appears to be completely dependent on the IR in this cell culture model. These results suggest that not IRS-2 but other adaptor proteins, such as Shc or Grb-associated binder-1 (Gab1), are the predominant interaction partners of the IR to transduce the mitogenic effects of insulin. It has been shown that Shc could compete with IRS-1 and probably IRS-2 as well for binding of the Grb2-Sos complex (63). Gab1 shares structural homology with the IRS proteins (21, 36) and could interact with SH2 domain-containing proteins, most notably SHP-2 (36), to control the activation of ERK1/2 (4, 10). Deletion of Gab1 in the liver of mice results in abolished insulin-induced ERK1/2 phosphorylation (6). Thus, the involvement of both, Gab1 or Shc, provides an explanation for the IR-dependent but IRS-2-independent activation of the MAP kinase pathway observed in stable HEK 293 cells. Our data also suggest that the expression levels of IR, IRS-2, and IRS-1/Akt2 and SHP-2 (36), to control the activation of ERK1/2 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52: 1319–1325, 2003.

To conclude, we were able to provide clear evidence for the phosphorylation of two novel IRS-2 serine residues in different cell systems and in vivo, and we were able to demonstrate their insulin-dependent kinetics and the responsible kinases and give first insights into their putative role in insulin signal transduction.

ACKNOWLEDGMENTS

We greatly appreciate the outstanding technical assistance of Ann Kathrin Pohl and Heike Runge.

REFERENCES

