Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes

Dongjuan Zhang,1,2* Hang Yang,1,2* Xiaomu Kong,1,2 Kang Wang,1 Xuan Mao,4 Xianzhong Yan,4 Yuan Wang,3 Siqi Liu,3 Xiaoyan Zhang,1,2 Jing Li,1,2 Lihong Chen,1,2 Jing Wu,1,2 Mingfen Wei,1,2 Jichun Yang,1,2 and Youfei Guan1,2

1Department of Physiology and Pathophysiology, Peking University Health Science Center, 2Key Laboratory of Cardiovascular Science of the Ministry of Education, 3Beijing Genomics Institute, Chinese Academy of Sciences, and 4National Center of Biomedical Analysis, Beijing, China

Submitted 24 May 2010; accepted in final form 12 October 2010

Zhang D, Yang H, Kong X, Wang K, Mao X, Yan X, Wang Y, Liu S, Zhang X, Li J, Chen L, Wu J, Wei M, Yang J, Guan Y. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. Am J Physiol Endocrinol Metab 300: E287–E295, 2011. First published October 19, 2010; doi:10.1152/ajpendo.00308.2010.—Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. To date, the molecular mechanisms of DN remain largely unclear. The present study aimed to identify and characterize novel proteins involved in the development of DN by a proteomic approach. Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice. Consistently, the activity of HMGCS2 in kidneys and 24-h urinary excretion of the ketone body β-hydroxybutyrate (β-HB) were significantly increased in db/db mice. Immunohistochemistry, immunofluorescence, and real-time PCR studies further demonstrated that HMGCS2 was highly expressed in renal glomeruli of db/db mice, with weak expression in the kidneys of control mice. Because filtered ketone bodies are mainly reabsorbed in the proximal tubules, we used RPTC cells, a rat proximal tubule cell line, to examine the effect of the increased level of ketone bodies. Treating cultured RPTC cells with 1 mM β-HB significantly induced transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in collagen I expression. The rapidly developed proteomic technique, which can identify changes in protein expression, posttranslational modifications, protein-protein interactions, cellular and subcellular distribution, and temporal patterns of expression (48), offers an ideal approach to study the complicated functional network of proteins in diabetes and DN (26, 33). Proteomic analysis of renal protein profiles in the diabetic condition may reveal additional novel mechanism(s) contributing to the progression of DN.

In the past decade, many high-throughput screening technologies, including gene microarray and proteomic techniques, have allowed researchers to define the pathophysiological mechanisms of many complicated diseases and to identify novel therapeutic targets for treatment (12, 21, 24). The rapidly developed proteomic technique, which can identify changes in protein expression, posttranslational modifications, protein-protein interactions, cellular and subcellular distribution, and temporal patterns of expression (48), offers an ideal approach to study the complicated functional network of proteins in diabetes and DN (26, 33). Proteomic analysis of renal protein profiles in the diabetic condition may reveal additional novel mechanisms contributing to the progression of DN.

In the present study, we used two-dimensional electrophoresis (2DE) combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantitatively profile the expression of proteins in the kidneys of type 2 diabetic db/db mice. We found that the expression of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the rate-limiting enzyme in ketogenesis in the liver (10, 23, 29), was significantly increased in the kidneys of db/db mice. We also measured the renal production of its major metabolite, β-hydroxybutyrate (β-HB), in db/db mice and examined the effect of β-HB on TGF-β expression and collagen I production, as well as the epithelial-to-mesenchymal transition (EMT) in cultured rat proximal tubule cells.

MATERIALS AND METHODS

Chemical reagents. Immobilized pH gradient (IPG) strips were purchased from Bio-Rad Laboratories (Hercules, CA). All chemical reagents for electrophoresis were from Amersham Biosciences (Uppsala, Sweden). All cell culture medium and supplements were from Sigma (St. Louis, MO). Modified trypsin (sequence grade) was from Promega (Madison, WI).

* D. Zhang and H. Yang contributed equally to this work.

Address for reprint requests and other correspondence: Y. Guan, Dept. of Physiology and Pathophysiology, Peking University Health Science Ctr., 38 Xueyuan Rd., Haidian District, Beijing, China 1000191 (e-mail: youfeiguan@bjmu.edu.cn).

http://www.ajpendo.org 0193-1849/11 Copyright © 2011 the American Physiological Society
Animal study. Sixteen-week-old male C57BKS/J db/db mice and age- and sex-matched nondiabetic littermate db/db mice as controls purchased from Jackson Laboratory were used. All animal experimental protocols were approved by the Peking University Institutional Animal Care and Use Committee. Fasting blood glucose, plasma insulin, serum triglyceride, and cholesterol levels were analyzed as previously described (5). Urinary albumin was measured by enzyme-linked immunosorbent assay (ELISA) (Albuwell kit, Exocell). Content of β-HB in plasma, urine, and kidney tissues was measured at the National Center of Biomedical Analysis with NMR spectroscopy as previously described (6).

Proteomic analysis. Kidneys were perfused with ice-cold PBS buffer to remove blood contamination. To prepare the renal protein samples, the whole kidney from each mouse was ground to powder in liquid nitrogen. The powder was suspended in ice-cold 10% TCA-acetone and incubated at −20°C overnight for protein precipitation. The precipitated proteins were centrifuged at 40,000 g and 4°C for 15 min. The pellets were collected, washed with ice-cold acetone twice, and then vacuum freeze-dried and stored as protein powder at 80°C. The pellets were collected, washed with ice-cold acetone twice, and then vacuum freeze-dried and stored as protein powder at 80°C. For 2DE, protein powders were dissolved in lysis buffer containing 7 M urea, 2 M thiourea, 40 mM Tris, 2% CHAPS, 50 mM DTT, 1 mM PMSF, and 10% glycerol, and then cocrystallized with a matrix of 17% (v/v) acetonitrile, 28% (v/v) acetic acid, 1 mM ethylene glycol, and 13% isopropanol. The proteins were then electrophoresed using the Ettan DALT II system for 1 h at 25 W per gel and then at 15 W per gel until the dye front reached the bottom of the gel. Gels were stained with Coomassie blue. After reduction of 1% DTT for 15 min and alkylation of 2.5% iodoacetamide for another 15 min, the IPG strips were loaded onto 12% polyacrylamide gels in Tris-glycine buffer (25 mM Tris-HCl, 192 mM glycine, 0.1% SDS). Electrophoresis involved use of the Ettan DALT II system for 1 h at 25 W per gel and then at 15 W per gel until the dye front reached the bottom of the gel. Gels were stained with Coomassie blue by an optimized classic silver staining method appropriate for mass spectrometry identification.

The 2D gels were scanned with the Amersham Imagescanner, and the images were analyzed by ImageMaster 2D Platinum (Amersham Biosciences). Significant change in level was defined as protein spots with equal or greater than twofold expression change between the diabetic and control groups. For protein identification, gel pieces containing the target protein spots were excised, washed, and subjected to in-gel trypsin digestion as previously described (16). The tryptic digests were desalted by POROS R2 (Applied Biosystems, Foster City, CA) and then cocrySTALLized with a matrix of α-cyano-4-hydroxycinnamic acid spotted on the target wells. The dried matrixes underwent then Bruker autoflex MALDI-TOF MS (Bremen, Germany) were separated by 10% SDS-PAGE and electrotransferred onto nitrocellulose membranes (4°C, 200 mA for 2 h) by the Bio-Rad Mini PROTEAN 3. The membranes were blocked at room temperature for 1 h in PBS with Tween 20 (PBST) containing 5% skim milk and then incubated with polyclonal rabbit anti-HMGCS2 (1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA), polyclonal rabbit anti-E-cadherin (1:500; Cell Signaling), or monoclonal mouse anti-veinmin (1:1,000; Sigma) at 4°C overnight. The membranes were washed five times for 5 min each with PBST and then incubated in 1:5,000 horseradish peroxidase-conjugated secondary antibody at room temperature for 1 h. The membranes were washed as above and developed with an enhanced chemiluminescence kit. After assay of target proteins, the membranes were stripped with 0.2 N NaOH (47) and reprobed with 1:1,000 diluted monoclonal tubulin antibody.

Isolation of renal glomeruli. Glomeruli for RNA extraction were isolated from control and db/db mice by the conventional sieving method. Briefly, the cortex of excised kidneys was dissected into pieces and underwent digestion with collagenase II (1 mg/ml) for 1 h at 37°C. The suspension was gently pressed though 100-, 70-, and 40-μm cell strainers sequentially and then the 40-μm cell strainer was inverted and washed twice with PBS. The flow-through was collected. Glomeruli were collected by spinning at 1,000 g for 10 min. The purity of isolated glomeruli was examined by visualization under a microscope.

RNA extraction and quantitative real-time RT-PCR. Total RNA from kidney tissue, RPTC cells, or mouse glomeruli was isolated with TRIzol reagent (Promega) and reverse transcribed by the reverse transcription system (Promega). Quantification of gene expression of HMGCS2, TGF-β1, and procollagen α1 chain of type I collagen (col1a1) was by quantitative real-time PCR. Complementary DNA was synthesized with the use of SuperScript III reverse transcriptase (Invitrogen, Carlsberg, CA) and oligo(DT) primer (Promega). Quantitative PCR involved the use of SYBR Green I (Molecular Probes, Eugene, OR) as a fluorescent probe. The primers were designed as follows: HMGCS2, forward: 5′-GGC TGT CAA AAC AGT GCT CA-3′ and reverse: 5′-GCA ATG TCA CCA CAG ACC ACC AC-3′; TGF-β1, forward: 5′-TGA GTG GTT GTC TTT TGA CG-3′ and reverse: 5′-TGG ACT GAT CCT CCC ATT GAT T-3′; col1a1, forward: 5′-AGG CAT AAA GGG TCA TCG TG-3′ and reverse: 5′-ACC GAT GGC TCC ATC TTT GC-3′; β-actin, forward: 5′-GGA CTC CTA TGT GGG TGA CG-3′ and reverse: 5′-CTT CTC CAT GTC GTC CCA GT-3′. Quantitative values were obtained as threshold PCR cycle number (Ct) when the increase in fluorescent signal of PCR product became an exponential growth. Target gene mRNA level was normalized to that of β-actin in the same sample as detailed previously (46). In brief, the relative expression of the target gene compared with that of β-actin was calculated as 2^−ΔΔCt, where ΔΔCt = Ct, target gene − Ct, β-actin. Each sample was measured in duplicate or triplicate in each experiment. Moreover, melting curves for each PCR product were analyzed to ensure the specificity of the amplification product.

Immunohistochemical analysis and immunofluorescence staining. For immunohistochemical analysis, tissues were fixed in 4% paraformaldehyde overnight at 4°C and then dehydrated in an ascending ethanol series and paraffin embedded. After conventional deparaffinization and hydration, sections (3 μm) were treated with 3% H2O2 (22°C) for 10 min to eliminate endogenous activity of peroxidase and then heated in a microwave oven in 1 mM EDTA (pH 8.0) for antigen retrieval. After being cooled at room temperature and washed with PBS, sections were blocked for 20 min in blocking solution (5% goat serum in PBS) and then incubated with polyclonal rabbit anti-HMGCS2 antibody (1:1,000, Santa Cruz Biotechnology) diluted in blocking solution overnight at 4°C. Sections were then washed in PBS and incubated with poly-peroxidase-conjugated goat-anti-rabbit IgG (Zhongshan Golden Bridge, Beijing, China) for 30 min at room temperature. After several washings with PBS, samples underwent successive diaminobenzidine (DAB) staining, hematoxylin staining, and dehydration and were mounted on cover glass. Serial sections were incubated with the same quantity of nonimmune rabbit IgG instead of primary antibody as negative controls.

Immunofluorescence staining was performed as previously reported (22). Briefly, 5-μm sections were fixed in ice-cold acetone and then permeabilized and blocked with 0.3% Triton X-100 and 10% goat serum. Primary antibodies were rabbit anti-HMGCS2 (1:1,000, Santa Cruz Biotechnology) and mouse anti-synaptotagmin (ready to USE.
The cells were treated with 1 mM acetyl phosphate, 10 mM H9262 and after acetyl-CoA addition. By definition, 1 unit of enzyme activity (100 lmol min) was measured in blood obtained from the femoral vein of mice starved for 6 h.

RESULTS

Animal data. The C57BKS/J db/db mouse, lacking the leptin receptor, is a well-documented model of type 2 diabetes exhibiting hyperglycemia, hyperinsulinemia, insulin resistance associated with hyperphagia, and obesity (1, 4, 37). The body weight of db/db mice at 16 wk of age was significantly increased by about twofold over that of db/m mice (Table 1). The blood glucose levels of db/m and db/db mice were 8.9 ± 0.5 and 17.9 ± 0.9 mmol/l, respectively (P < 0.001). Compared with db/m mice, db/db mice showed significantly higher plasma insulin and cholesterol levels (Table 1). To further evaluate the renal function of db/db mice, 24-h urinary albumin excretion was measured. At 16 wk of age, 24-h urinary albumin excretion was significantly higher in db/db mice than in db/m mice (588.7 ± 112.7 vs. 27.6 ± 8.4 μg), which is consistent with our previous findings in db/db mice (5).

Upregulation of HMGCS2 in diabetic kidneys. Protein spots with differential expression in three sets of gels were analyzed (Supplemental Fig. S1). Approximately 700 protein spots were visualized on the 2D gels. In total, 48 protein spots were significantly downregulated and 14 upregulated (>2-fold, P < 0.05). Five downregulated and three upregulated protein spots with the most significant expression changes underwent MALDI-TOF MS assay. All identified proteins are in Table 2. By using real-time PCR, we confirmed the changes of Acy3, Ldh, Nudt19, Kcipp1, and VH26 at the mRNA level (Supplemental Fig. S2). Among eight proteins, HMGCS2, the rate-limiting enzyme controlling the HMG-CoA pathway in ketogenesis, was significantly increased by more than fourfold (Fig. 1A). Increased HMGCS2 expression in diabetic kidneys was further confirmed by Western blot assay (Fig. 1B). To clarify whether the increase in HMGCS2 protein levels was due to increased gene transcription, quantitative real-time PCR was performed and the results were consistent with the changes at the protein level.

Table 1. Phenotypic characteristics of control and db/db mice

<table>
<thead>
<tr>
<th>Table 1. Phenotypic characteristics of control and db/db mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Body weight, g</td>
</tr>
<tr>
<td>Kidney weight, g</td>
</tr>
<tr>
<td>FBG, mmol/l</td>
</tr>
<tr>
<td>Plasma insulin, pmol/l</td>
</tr>
<tr>
<td>Plasma cholesterol, mmol/l</td>
</tr>
<tr>
<td>24-h Urinary albumin, μg</td>
</tr>
</tbody>
</table>

Data are means ± SE. Fasting blood glucose (FBG) concentration was measured in blood obtained from the femoral vein of mice starved for 6 h.

*P < 0.05, †P < 0.01, ‡P < 0.001 vs. db/m mice (control).

Table 2. Partial list of proteins with differential expression identified by proteomic analysis

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Protein Name</th>
<th>Ratio (db/db vs. control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downregulated spots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>gi 19880021 Aspartoacylase-3</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>gi 31982393 Epoxide hydrolase 2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>gi 54119292 L-lactate dehydrogenase</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>gi 133284 Nucleoside diphosphate-linked moiety X motif 19</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>gi 52000885 Protein kinase C inhibitor protein 1</td>
<td>0.5</td>
</tr>
<tr>
<td>Upregulated spots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>gi 19353248 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2)</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>gi 23274027 Aldolase 2, B isoform</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>gi 83010951 Similar to Ig heavy chain V–III region VH26 precursor</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Spot numbers correspond to those labeled in Supplemental Fig. S1.
that HMGCS2 was weakly expressed in kidneys of control
A
control (Fig. 4 specific staining with nonimmune IgG used as a negative
specificity of HMGCS2 antibody was confirmed by the lack of
mine intrarenal localization of HMGCS2 in kidneys. The
determination and validation by Western blot and real-
time PCR analysis. A, left: representative high-magnification images from 2-dimen-
sional gels. Arrows indicate protein spot corresponding to HMGCS2. Right: quanti-
tative measurements showed significant increase in HMGCS2 protein expression in
db/db vs. db/m mouse kidneys. B: immunoblot assay verified that HMGCS2 protein
was increased in diabetic kidneys (n = 6 for each group). C: real-time PCR analysis
demonstrated that HMGCS2 mRNA levels of diabetic kidneys were significantly in-
creased (n = 5 for each group). mRNA
levels of HMGCS2 were normalized to
those of β-actin. **P < 0.01, ***P < 0.001
vs. db/m.

Increased HMGCS2 activity and ketone body production in
diabetic kidneys. To determine whether upregulated HMGCS2
expression results in enhanced ketogenesis and increased ke-
tone body production, HMGCS2 activity was measured in
kidney homogenates from db/db and db/m mice. Very low
HMGCS2 activity was detected in db/m kidneys (Fig. 2). In
contrast, HMGCS2 activity was increased fivefold in db/db
kidneys compared with db/m kidneys. Similarly, HMGCS2
mRNA and protein levels were significantly increased in the
livers of db/db mice compared with those of db/m mice (Supplemental Fig. S3).

Because HMGCS2 is the key enzyme controlling ketone
body formation in the liver (10) and β-HB accounts for ~70%
of the ketone bodies (14), we measured β-HB levels in plasma,
urine, and kidney tissues of db/m and db/db mice. Urinary
β-HB excretion at 24 h was about fourfold higher in db/db
mice than in control mice (Fig. 3A). Moreover, renal β-HB
levels were significantly higher in db/db than control kidneys
(Fig. 3B). In contrast, serum β-HB concentrations did not
differ between db/m and db/db mice (Fig. 3C).

Localization of HMGCS2 in the kidneys of db/db mice. To
further address the potential role of increased HMGCS2 ex-
pression in the kidneys of db/db mice, immunohistochemistry
and immunofluorescence analyses were performed to deter-
mine intrarenal localization of HMGCS2 in kidneys. The
specificity of HMGCS2 antibody was confirmed by the lack of
specific staining with nonimmune IgG used as a negative
control (Fig. 4A, inset). Immunohistochemical staining showed
that HMGCS2 was weakly expressed in kidneys of control
mice but highly expressed in renal glomeruli of db/db mice
(Fig. 4A). This expression pattern was further confirmed by
using another commercially available goat polyclonal antibody
(Santa Cruz Biotechnology) (data not shown). Immunofluores-
cence study of HMGCS2 and synaptopodin, a glomerular
podocyte-specific marker, further showed HMGCS2 highly
expressed in glomerular podocytes and in other glomerular
cells (Fig. 4B). Consistently, quantitative real-time PCR an-
alysis revealed increased glomerular HMGCS2 mRNA expres-
ion in diabetic kidneys. HMGCS2 mRNA levels were 5.3-fold
higher in freshly isolated glomeruli of db/db mice than in those
of db/m mice (Fig. 4C). HMGCS2 mRNA levels were also
significantly increased in renal cortical tubules (Fig. 4C).

Induction of TGF-β1 and collagen I expression and EMT by
β-HB in cultured renal proximal tubule cells. Because filtrated
ketone bodies are mainly reabsorbed and metabolized by the
proximal tubules (8, 14), we analyzed the impact of increased
ketone body exposure on RPTC cells, a rat proximal tubule cell
line. Treatment with 1 mM β-HB for 24 h significantly in-
creased expression and secretion of TGF-β1 (Fig. 5A) and
collagen I (Fig. 5B) in RPTCs, which is consistent with a
previous report that β-HB induced TGF-β and collagen pro-
duction in HK-2 cells (9). β-HB treatment also induced colla-
gen IV and fibronectin expression in RPTCs (Fig. 5C). Fur-
thermore, we evaluated histological changes, collagen I and IV
expression, and EMT in kidneys of db/db mice. Histological
examination showed that diabetic glomeruli exhibited in-
creased mesangial expansion and fibrosis (Supplemental Fig.
S4A). Immunohistochemistry study demonstrated that diabetic
kidney exhibited increased expression of collagen I and IV
(Supplemental Fig. S4, B and C) and loss of E-cadherin and

A

E290 KETONEGENESIS IN DIABETIC KIDNEY

Fig. 1. Proteomic identification of increased
3-hydroxy-3-methylglutaryl-CoA synthase
2 (HMGCS2) expression in diabetic kidneys
and validation by Western blot and real-
time PCR analysis. A, left: representative high-magnification images from 2-dimen-
sional gels. Arrows indicate protein spot
inset on June 15, 2017 http://ajpendo.physiology.org/ Downloaded from
by 10.220.33.4 on June 15, 2017

Downloaded from http://ajpendo.org/ by 10.220.33.4 on June 15, 2017

AJP-Endocrinol Metab • VOL 300 • FEBRUARY 2011 • www.ajpendo.org

A
gain in vimentin expression (Fig. 6A). We also examined the effect of \(\beta\)-HB treatment on EMT, which plays an important role in renal fibrosis and DN (32, 38). Western blot analysis showed that the cellular adhesion molecule E-cadherin, a specific marker of epithelial cell phenotype, was significantly inhibited with \(\beta\)-HB treatment, whereas the expression of vimentin, a myofibroblast marker, was significantly increased (Fig. 6B). At a dose as high as 1 mM, \(\beta\)-HB did not affect cell viability of RPTC cells (data not shown).

DISCUSSION

With the development of high-throughput technologies, proteomics is becoming a powerful tool for identifying potential mechanisms underlying many complicated diseases, including cancer, cardiovascular diseases, and diabetes mellitus (21, 33). One of the advantages of the proteomic approach is that it allows for comparison of protein profiles in normal and diseased tissues or cells, which may lead to the identification of new proteins or new signaling pathways involved in the pathogenesis of disease (21). In the past decade, the proteomic technique has been used to define the pathophysiology of DN in various animal models (2, 40, 41, 43). Proteomic analysis of renal cortex and glomerular protein profiles from diabetic \(db/db\) mice were first reported by Tilton et al. (43) and Barati et al. (2). A number of dysregulated proteins were identified in these studies, which greatly advances our understanding of the mechanisms of DN. Our study is a step toward validation of the identified proteins in diabetic kidneys and elucidation of the role of novel signaling networks in the pathogenesis of DN.

In the present study, we used 2DE combined with MALDI-TOF MS to analyze protein profiles in the whole kidneys of \(db/db\) mice and lean control mice and identified a set of differentially regulated proteins. Among eight proteins identified, the changes of five proteins, Hmgcs2, Acy3, Ephx2, KCIP-1, and Nudt19, were in line with a previous study using renal cortex of \(db/db\) mice (39). Furthermore, we confirmed the changes of Acy3, Ldh, Nudt19, KCIP-1, and VH26 at the mRNA level. Among the proteins with altered expression, HMGCS2, the rate-limiting enzyme in ketogenesis and highly expressed in the liver of adults (10, 20, 29, 44), was significantly upregulated in the kidneys of \(db/db\) mice. Because a previous report demonstrated that \(\beta\)-HB, the major ketone body, induces fibrotic processes in a human proximal tubule cell line (9), this finding suggests that ketone bodies may play an important role in the pathogenesis of DN. The increase of HMGCS2 expression in the kidneys of \(db/db\) mice was further supported by immunoblot and real-time PCR assays. As ex-
pected, the activity of HMGCS2 was also significantly increased in the kidneys of db/db mice. Because overexpression of HMGCS2 is associated with hepatic hyperketogenesis (44), these results suggest that the diabetic kidney may exhibit increased ketogenesis. In support of this, the level of the major ketone body, β-HB, was significantly higher in urine and kidney tissues from db/db mice than in those from db/m mice. Because the two groups did not differ in serum β-HB levels.

Fig. 4. Localization of HMGCS2 expression in diabetic kidneys. A: immunohistochemical analysis of HMGCS2 in kidneys of db/m and db/db mice. Arrows indicate the glomeruli. NC, negative control (sections incubated with the same quantity of nonimmune rabbit IgG instead of primary antibody; shown for the specificity of the HMGCS2 antibody used). B: immunofluorescence results showing HMGCS2 mainly expressed in podocytes but also in other cell types of glomeruli. Podocytes are labeled in green by a primary antibody against synaptopodin and a FITC-labeled second antibody. HMGCS2 is labeled in red by a primary antibody against HMGCS2 antibody and a tetramethylrhodamine isothiocyanate (TRITC)-labeled secondary antibody. Colocalization of synaptopodin and HMGCS2 is displayed by yellow fluorescence in merged image. C: measurement of HMGCS2 mRNA levels in freshly isolated glomeruli and cortical tubules of db/m and db/db mice; Top: morphological appearance and purity of isolated glomeruli; arrow indicates purified glomeruli. Bottom: HMGCS2 mRNA levels were examined by quantitative real-time PCR in glomeruli and cortical tubules compared with db/m mice. The mRNA levels of HMGCS2 were normalized to those of β-actin. *P < 0.05 vs. control (n = 4).

Fig. 5. Ketone body-induced transforming growth factor-β1 (TGF-β1) and extracellular matrix protein expression in cultured RPTC cells. A: TGF-β1 mRNA expression (left) and production (right) after 24-h β-HB treatment (1 mM). B: collagen I (colla1) mRNA expression (left) and supernatant collagen content (right) after exposure to 1 mM β-HB treatment for 24 h. C: collagen IV (col4; left) and fibronectin (right) mRNA expression were increased after β-HB treatment for 24 h. *P < 0.05, **P < 0.01 vs. control (n = 4).
increased renal and urinary ketone body levels may reflect enhanced ketogenesis in diabetic kidneys. It is also possible that increased glomerular filtration of β-HB and subsequent uptake by kidney may account for the elevated urinary and kidney β-HB levels seen in db/db mice. Since hepatic expression of HMGCS2 is increased in db/db mice, these mechanisms may help maintain normal plasma β-HB levels in the type 2 diabetes condition. Collectively, these results demonstrate that renal HMGCS2 upregulation is, at least in part, responsible for increased ketone body production in kidneys of db/db mice and suggest that the diabetic kidney becomes a ketogenic organ.

It has been reported that HMGCS2 mRNA and protein are present in suckling rat kidney, and renal cortex is able to produce low amounts of ketone bodies with oleate treatment (42). HMGCS2 mRNA was also reported to be expressed in human kidney (17). However, little is known regarding the intrarenal localization of this enzyme. To further determine intrarenal localization of HMGCS2 expression in diabetic kidneys, immunohistochemistry and immunofluorescence studies were performed. HMGCS2 was found to be weakly expressed in nondiabetic kidneys but abundant in renal glomeruli of diabetic mice. High expression of HMGCS2 in renal glomeruli was further supported by freshly isolated glomeruli from db/db mice exhibiting significantly higher mRNA levels of HMGCS2 than those from db/m mice. In diabetic glomeruli, HMGCS2 expression appeared to be mainly localized in podocytes, as assessed by immunofluorescence analysis. Thus podocytes may be one of the major sources of ketone bodies in diabetic kidneys. Although HMGCS2 was predominantly expressed in the glomeruli of db/db mouse kidneys, low but detectable expression of HMGCS2 was also found in renal cortical tubules. Therefore, renal cortical tubules, especially the proximal tubules, may also be responsible for increased ketone bodies in the kidney and urine.

Ketone bodies in Bowman’s capsule, either filtered or produced by glomeruli, are mainly reabsorbed in the proximal tubules; ~80% of ketone bodies are absorbed by this nephron segment (8). In the physiological state, ketone bodies, including β-HB and acetoacetate, are mainly reabsorbed by tubular epithelial cells through sodium-coupled monocarboxylate transporters (SMCTs), as the major energy sources with lactic acids promoting substance transportation in the cells or by being transported back to circulation through proton-coupled monocarboxylate transporters (MCTs). Although little is known about the expression of SMCT and their regulation, peroxisome proliferator-activated receptor (PPAR)α can up-regulate the MCT-1 expression in renal proximal tubular cells (13). In the present study, HMGCS2 activity and ketogenesis were significantly elevated in the kidneys of db/db mice, which suggests that renal proximal tubule cells are exposed to high levels of ketone bodies in the diabetic condition. In line with a previous report (9), ketone body β-HB increased TGF-β expression and collagen production in cultured RPTCs. These effects appeared to be mediated by oxidative stress and are Smad3 dependent (9). Because EMT also plays an important role in the progression of DN (11, 32), the effect of β-HB on
the expression of E-cadherin and vimentin, specific molecular markers for epithelial and mesenchymal cells, respectively, was evaluated in RPTC cells. β-HB treatment resulted in significantly decreased E-cadherin expression and increased vimentin expression. These findings suggest that increased levels of β-HB may be involved in the EMT process in proximal tubule cells in the diabetic condition.

Lipotoxicity plays an important role in the pathogenesis of DN. In studies reported by Levi’s group (28, 45), expression levels of HMG-CoA reductase, a critical enzyme involved in cholesterol biosynthesis, were significantly increased in the kidneys of both type 1 and type 2 diabetes. These studies suggest that increased HMG-CoA reductase may account for cholesterol accumulation in diabetic kidneys. HMG-CoA, a key intermediate in the biosynthesis of cholesterol, is formed from acetyl-CoA and acetoacetyl-CoA by HMGC. Our finding that HMGC2 was significantly upregulated in diabetic kidney implies that increased renal HMGC2 may be an important factor contributing to cholesterol accumulation and lipotoxicity in diabetic kidneys, since HMGC2 can also represent a major source of ketone bodies in the diabetic kidney. Exposure of proximal tubule cells to β-HB was associated with a significant induction of TGF-β1 and collagen I expression and the EMT process. Since ketoacidosis is associated with a significant induction of TGF-β and collagen production in HK-2 cells are dependent on TGF-beta and Smad3. Kidney Int 64: 2041–2051, 2003.

Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in

