Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells

Wenyen Niu,1,2 Philip J. Bilan,1 Shuhei Ishikura,1 Jonathan D. Schertzer,1 Ariel Contreras-Ferrat,1,3 Zhengxiang Fu,2 Jie Liu,2 Shlomit Boguslavsky,1 Kevin P. Foley,1 Zhi Liu,1 Jinru Li,2 Guilan Chu,2 Thomas Panakkezhum,5 Gary D. Lopaschuk,5 Sergio Lavandero,3,4 Zhi Yao,2 and Amira Klip1

1Program in Cell Biology, The Hospital for Sick Children, Toronto, Toronto, Canada; 2Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, China; 3Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmaceuticas; 4Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and 5Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada

Submitted 24 December 2009; accepted in final form 16 February 2010

Niu W, Bilan PJ, Ishikura S, Schertzer JD, Contreras-Ferrat A, Fu Z, Liu J, Boguslavsky S, Foley KP, Liu Z, Li J, Chu G, Panakkezhum T, Lopaschuk GD, Lavandero S, Yao Z, Klip A. Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells. Am J Physiol Endocrinol Metab 298: E1058–E1071, 2010. First published February 16, 2010; doi:10.1152/ajpendo.00773.2009.—Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting muscle. This system will be ideal to further analyze the underlying signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying signals whereby acute contraction regulates glucose uptake in skeletal muscle. Therefore, separate AMPK- and calcium-dependent pathways participate in the regulation of glucose uptake in skeletal muscle cells.

SKELETAL MUSCLE IS A MAJOR DETERMINANT OF GLYCEMIA, and insulin and exercise are two major physiological stimuli of glucose uptake into this tissue. For both insulin and acute muscle contraction, this occurs through redistribution of GLUT4 from vesicle storage compartments to the plasma membrane (7, 14). Signals emanating from the insulin receptor leading to glucose uptake include insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, and the Rab-GAP protein AS160 (9, 26, 34, 40, 78). In contrast, the signaling pathways by which muscle contraction regulates GLUT4 vesicle traffic remain poorly defined, since studies have so far been confined to analyzing pathways involved in the stimulation of glucose uptake in intact muscle tissue (4, 16, 30, 54, 55). Those studies reveal participation of signals requiring calcium and AMP-dependent protein kinase (AMPK) in the stimulation of glucose transport (20, 28, 48, 76, 77). Cytosolic calcium rises rapidly in response to the depolarizing excitatory signal and consequent calcium release from the sarcoplasmic reticulum. Such calcium triggers myosin II-dependent mechanical contraction and relaxation cycles that consume ATP, in turn activating AMPK (1). Accordingly, pre- and postforce production signals appear to contribute to the stimulation of glucose uptake. Calcium may signal through a variety of calcium-sensitive kinases, such as calmodulin-dependent kinase II (CaMKII) or protein kinase C, or it may contribute to activation of AMPK through its upstream activator CaMK kinase (CaMKK) (25, 28). Alternatively, AMPK is also activated directly by its classical upstream activator LKB1 in response to a rise in AMP (18, 75). Thus, AMPK appears to play a central role, and numerous studies provide evidence for and against participation of each of these kinases in the stimulation of glucose uptake by contraction (10, 28, 29, 31, 41, 45, 76, 77), depending partly on the contraction protocol, muscle type, and method of analysis.

We hypothesize that there is a need to establish a simplified cellular model amenable to physiological stimulation and contraction in which to obtain proof of principle for the participation of individual pathways, their effect on GLUT4 traffic in addition to glucose uptake, and their possible interplay. Although L6 muscle cells have proven extremely useful to dissect out insulin signals and their impact on GLUT4 traffic, C2C12 myotubes may be more suitable to study contraction signal transduction as only they develop a contractile apparatus of sarcomere units (11, 43, 49). In addition, C2C12 myotubes have abundant levels of nicotinic acetylcholine receptors that are organized into signaling clusters upon ligand binding (21, 71). Yet, C2C12 myotubes have not been widely utilized to study insulin- or contraction-stimulated glucose uptake because they express extremely low levels of GLUT4 (37). A line of C2C12 cells transfected with GLUT4 was recently used to study the effect of chronic electrical pulse stimulation on cytokine production and GLUT4 cycling (49) but not explored for their acute response to muscle contraction. Here, we stably overexpressed GLUT4 with a myc epitope in its first exofacial loop...
(GLUT4myc) into the C2C12 myoblast background and characterize the ability of cholinergic stimulation via carbachol to increase GLUT4myc at the surface of differentiated myotubes. Using this system, we demonstrate that carbachol increases cytosolic calcium and activates AMPK in a myosin II-ATPase-dependent manner. The cholinergic agonist induces an increase in GLUT4myc at the cell surface that depends in part on AMPK and in part on a calcium-induced signal that may involve CaMKII. Thus, this cellular system responds to a physiological trigger of muscle contraction by activating calcium and AMPK signals that converge on rapidly increasing surface GLUT4 levels.

MATERIALS AND METHODS

Materials. Human insulin (Humulin R) was obtained from Eli Lilly Canada (Toronto, ON, Canada). 2-Deoxy-d-[3H]glucose (25–50 Ci/mmol, NET-549) and d-t[3H]fructose (945 Ci/mmol, NEC-314) were purchased from PerkinElmer (Waltham, MA). Indinavir was obtained from Merck Research Laboratories (Rahway, NJ) through a materials transfer agreement. Cytochalasin B, β-t-glucose, 2-deoxy-d-glucose, o-phenylenediamine dihydrochloride, carbamoylcholine chloride (carbachol), protease inhibitor cocktail, polyclonal IgG to c-myc (epitope), IgM to α-actinin-1, β-bungarotoxin, epibatidine, and apomorphine, and all purest grade available chemicals were from Sigma Chemical (St. Louis, MO) unless otherwise noted. Fluo 3-AM, pluronic F-127, lipofectamine 2000 and lipofectamine RNAiMax, Gibco brand transferrin receptor antibody, and TRIZol were from Invitrogen (Carlsbad, CA). All small interfering RNA (siRNA) oligonucleotides were from Qiagen. Compound C, KN93, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM), and basicidin-S-hydrochloride were from Calbiochem (San Diego, CA). AICAR was from BioMol (Plymouth Meeting, PA). N-benzyl-p-toluenesulfonamide (BTS) was from Tocris Bioscience (Ellisville, MO). Pierce BCA protein detection kit was from Thermo Fisher Scientific (Rockford, IL). Dulbecco’s modified Eagle’s medium (DMEM), α-MEM, fetal bovine serum (FBS), penicillin, streptomycin, and trypsin-EDTA was from Toronto Research Chemicals (Toronto, ON, Canada). STO-609 was from Tocris Bioscience (Ellisville, MO). Alexa 488-conjugated goat anti-mouse IgG, Zymed brand transferrin receptor antibody, lipofectamine RNAiMax, GIBCO brand horse serum, Alexa 488-conjugated goat anti-mouse, goat anti-rabbit IgG, and donkey anti-mouse IgM antibodies were prepared by immunization of rabbits with keyhole limpet hemocyanin in PBS for 30 min, initiated at 4°C, and then shifted to room
temperature, followed by quenching with 0.1 M glycine in PBS for 10 min. Cells were permeabilized with 0.1% Triton X-100 for 20 min at room temperature before immunolabeling with anti-c-myc 9E10 antibody (1:200), followed by Alexa 488-conjugated goat anti-mouse IgG (Invitrogen, Carlsbad, CA) secondary antibody (1:1,000) in PBS containing 1% BSA. The cells were rinsed six times with PBS and then water. Coverslips were mounted on slides with Dako (Carpinteria, CA) solution and analyzed on a Zeiss LSM-510 laser scanning confocal microscope.

2-Deoxy-D-glucose uptake in cultured cells. Following serum depletion, cells were treated with insulin, AICAR, or carbachol in triplicate at the concentrations and times indicated. Cells were rinsed with HEPES-buffered saline (140 mM NaCl, 5 mM KCl, 2.5 mM MgSO4, 1.0 mM CaCl2, and 20 mM HEPES-Na, pH 7.4, 295 ± 5 mOsm) and used immediately for measurement of 2-deoxy-D-glucose uptake as described (50). Inclusion of cytochalasin B (10 μM) in some wells of the uptake assay would block transporter-mediated association of radiolabeled 2-deoxy-D-glucose with the cells. The remainder was subtracted from the total uptake to calculate glucose transporter-mediated glucose uptake. Inclusion of indinavir (100 μM) in some wells of the uptake assay was used to determine the contribution of GLUT4-mediated glucose uptake.

Cell surface GLUT4myc density. GLUT4myc levels at the cell surface of intact C2C12-GLUT4myc myotubes were measured by an antibody-colored immunometric assay, as described for L6-GLUT4myc cells (50), with modifications for C2C12-GLUT4myc myotubes. Briefly, cells grown in 24-well plates and serum depleted for 4.5 h and treated as indicated were washed twice with ice-cold PBS and fixed with 3% (vol/vol) paraformaldehyde for 10 min at 4°C and 20 min at room temperature. All subsequent steps were at room temperature. Cells were rinsed and incubated for 10 min with 0.1 M glycine in PBS. Following blocking with 5% nonfat milk (wt/vol) in PBS for 10 min, cells were reacted with anti-myc polyclonal antibody (1:250) in 5% milk in PBS for 1 h. After five washes with PBS, cells were incubated with HRP-conjugated goat anti-rabbit IgG (1:10,000) for 1 h, washed extensively with PBS (6 times, 1 ml/well, 3 min/wash), and incubated with 1 ml/well of 0.4 mg/ml o-phenylenediamine dihydrochloride reagent for 20 min. The reaction was stopped by addition of 2.5 ml of 3 N HCl. Supernatant was collected and 0.2 ml used to read optical absorbance at 492 nm. Background absorbance obtained from wild-type C2C12 myotubes was subtracted from all values.

Mouse skeletal muscle 2-deoxy-D-glucose uptake and homogenates. Extensor digitorum longus (EDL) hindlimb skeletal muscles were removed by dissection (62) from mice anesthetized with 100 μl/kg ketamine (110 rpm, 30°C), followed by incubation with carbachol, insulin, or AICAR (at 100 μM, 10 mM, or 2 mM, respectively, for 30 min). Muscles were blotted on filter paper, weighed, and lyzed in 1 ml of 1 M NaOH for 1 h at 85°C, followed by liquid scintillation counting. Extracellular trapping and glucose transporter-independent uptake were calculated using the nontransportable d-[14C]mannitol. Muscle homogenates were prepared following incubation with stimulators by homogenization in 0.3 ml of 255 mM sucrose, 2 mM Na2EDTA, 20 mM HEPES (pH 7.4) supplemented with protease inhibitor cocktail, 1 mM sodium vanadate, 10 nM okadaic acid, and 50 mM NaF using 20 strokes with a 5-ml Wheaton glass homogenizer. Homogenates were transferred to microtubes and centrifuged at 8,000 g for 10 min at 4°C, and the pellet was discarded. Protein concentrations were determined using the BCA method.

siRNA. C2C12-GLUT4myc myotubes were transfected with siRNA to nonrelated control or LKB1 or cotransfected with siRNA to AMPKα1 and -α2 (total 200 nM oligonucleotide) using the lipofectamine RNAiMax transfection reagent per the manufacturer’s instructions. The target sequences for siRNA oligomers for AMPKα1, AMPKα2, and LKB1 were AAG GAA AGT GAA GGT GGGCAA (gene ID: 105787), TTC CTC TTC ATT AAT CCT TTA (gene ID: 108079), and CAG CTG ATT GAC GGC CTG GAA (gene ID: 208697), respectively. The sense sequence for nonrelated siRNA control was AUU CUA UCA CUA GGG UGA C dTdT. Cells were transfected on days 4 and 5 after seeding, and experiments were carried out 72 h posttransfection.

Determination of intracellular Ca2+. C2C12-GLUT4myc myotubes grown on coverslips were serum deprived in DMEM for 3 h and then washed three times with Ca2+-containing resting buffer (145 mM NaCl, 5 mM KCl, 2.6 mM CaCl2, 1 mM MgCl2, 5.6 mM D-glucose, and 10 mM HEPES, pH 7.4) and loaded with 10 μM Fluo-3 AM calcium-sensitive fluorescent dye (stock in 20% pluronic acid, DMSO) for 50 min at 37°C. After dye loading, cells were washed with resting buffer and used within 1 h. Coverslips were mounted in a 1-ml-capacity temperature-controlled chamber (37°C) and placed in the microscope for fluorescence measurements (excitation 490 nm). Recording of fluorescent images was initiated >5 min prior to direct addition of carbachol to the chamber at the final concentrations indicated, and images were collected every 1.3 s with a PL APO 40×/1.25–0.75 objective using Meta Imaging Series 6.1 software by Molecular Devices (Sunnyvale, CA). For quantification of the fluorescence in each cell, a manual contour was generated and the mean of fluorescence intensity calculated. Intracellular concentrations of Ca2+ were expressed as percentages of fluorescence intensity relative to basal (a value stable for ≥5 min in resting conditions). The fluorescence intensity increase is proportional to the rise in intracellular calcium.

Microscopy, time-lapse movies, and image analysis. Cells were plated on 25-mm cover glasses (VWR, Natick, MA). A Leica DMIRE2 microscope (with a PL APO 40×/1.25 oil objective) and a temperature controller (Medical Systems, Greenvale, NY) were used along with a Hamamatsu (Shizuoka, Japan) model C4742-95-12ER charge-coupled device camera. Volocity 5.0 software was used to capture live-cell differential interference contrast images at 10 frames/s for a period of 20 and 11 min for carbachol/vehicle- and carbachol/BTS-treated cells, respectively. The resulting images were reassembled into one time point per 5-s movie using Volocity 5.0 software and further processed using NIH Image J 1.42 software.

mRNA extraction and RT-PCR. RNA was extracted from C2C12-GLUT4myc myotubes by guanidine isothiocyanate-phenol-chloroform. Semiquantitative RT-PCR was performed on 200 ng of total RNA using a QuantiTect One-Step RT-PCR kit as follows: reverse transcription (50°C, 30 min), heat inactivation (95°C, 15 min), repeated cycles of denaturation (94°C, 30 s), annealing (56°C, 30 s), and extension (72°C, 60 s) with the primer pairs CaMKKα (forward, TGGAGCGTGTGTATCAGGAG; reverse, CAGGAGGTCAACACAAAT) and CaMKKβ (forward, TACCTCGGATTTGGGAC AAA; reverse, TGCAGCATTGTG-CAGTTTCTC). PCR products were subjected to 2.5% agarose gel electrophoresis in TAE buffer, ethidium bromide stained, and photographed under ultraviolet light. The number of PCR cycles was titrated for each gene-specific primer pair target to ensure linearity.

Statistical analysis. Statistical analyses were carried out using Prism 3.0 software (San Diego, CA). Two groups were compared using Student’s paired t-test, and more than two groups were compared using analysis of variance with Tukey’s post hoc analysis.
RESULTS

Characterization of the C2C12-GLUT4myc cell line. Insulin-stimulated glucose uptake and GLUT4 traffic in muscle cells have been characterized extensively, using an L6 rat muscle cell line stably transfected with a GLUT4 construct containing an exofacial myc epitope tag (35, 56, 70). On the other hand, L6 cells are less amenable to the study of stimuli related to muscle contraction, since they do not develop sarcomeric organization of α-actin and muscle myosin II, express low numbers of nicotinic acetylcholine receptors (51), and respond weakly to AICAR (67). These properties are better displayed by the C2C12 muscle cell line, and accordingly, we generated a clonal line stably expressing GLUT4myc that far exceeded the low levels of endogenous GLUT4 (Fig. 1A). Total GLUT4 (predominantly GLUT4myc) expression was comparable in C2C12-GLUT4myc and L6-GLUT4myc myotubes (Fig. 1B).

The transferrin receptor IRAP and sortilin are major membrane protein residents of the GLUT4 storage compartment (33, 42). Figure 1C shows that IRAP expression is higher in C2C12 than in L6 myotubes, whereas the opposite was found for sortilin, a protein hypothesized to aid in sorting GLUT4 toward the insulin-sensitive storage compartment (63). VAMP2, a v-SNARE involved in regulated GLUT4 traffic (52), and VAMP7, a v-SNARE involved in the constitutive traffic of GLUT4 in unstimulated conditions (53), were similarly expressed in both cell types. Quantification of the gels in Fig. 1C demonstrated that the housekeeping GLUT1 glucose transporter was 1.8 ± 0.2-fold (n = 3) more abundant in C2C12- than in L6-GLUT4myc myotubes. In addition, when these samples were probed with anti-myc (not shown), GLUT4myc content was lower in C2C12 (0.5 ± 0.1; n = 3) compared with L6-GLUT4myc myotubes, suggesting that GLUT1 may contribute to some of the glucose uptake response to several stimuli in C2C12-GLUT4myc myotubes.

We have reported that indinavir can be used to assess the relative contributions of glucose uptake through GLUT4 (57). Indinavir is an HIV protease inhibitor that binds and inhibits GLUT4 with 100-fold higher affinity compared with other glucose transporters like GLUT1 (46). When included in the glucose uptake assay buffer, 100 μM indinavir rapidly inhibits transport through GLUT4, and cells or tissues largely dependent on GLUT4 typically show 80–90% inhibition of their glucose uptake in the presence of indinavir (57). Table 1 shows that only 17 and 41–42% of basal and stimulated rates of glucose uptake, respectively, in parental C2C12 myoblasts were inhibited by indinavir, suggesting significant contributions of GLUT1 to glucose uptake. In C2C12-GLUT4myc myotubes, indinavir inhibited 39 and 61–66% of basal and stimulated rates of glucose uptake, respectively (Table 1). These results indicate that in C2C12-GLUT4myc myotubes the contribution of GLUT4 to glucose uptake response was substantial. Nonetheless, GLUT1 contributed perhaps to 50% of the glucose uptake in the basal state and 25% in the stimulated states.

Previously, we estimated that the total GLUT4/myc/GLUT1 content in L6-GLUT4myc cells was 500:1 based on quantification of the molar cell surface levels of GLUT1 and GLUT4, using bis-mannose affinity photolabeling and determination of the relative subcellular distributions of glucose transporters (24). By the comparisons between C2C12-GLUT4myc and L6-GLUT4myc made in Fig. 1C (and described above), the total GLUT4myc/GLUT1 content in C2C12-GLUT4myc myotubes is ~125:1. Assuming a large distribution of GLUT4 to intracellular membranes (24), this may suggest that a cell surface of GLUT4myc/GLUT1 ratio may be around 25:1.

Figure 2 illustrates the distribution of GLUT4myc in C2C12 myoblasts and myotubes detected by indirect immunofluorescence via the myc epitope. The images show that GLUT4myc subcellular distribution is largely intracellular, perinuclear, and throughout the cytosol at both stages of development, similar to GLUT4myc distribution in L6-GLUT4myc cells (8).

Carbachol elevates cell surface levels of GLUT4. Motor neurons depolarize muscle fibers through the release of the neurotransmitter acetylcholine as the initiating signal for muscle contraction. Carbachol is a stable analog of acetylcholine...
and can readily induce skeletal muscle contraction (66). When added to C2C12-GLUT4myc myotubes for 20 min, carbachol (0.1 mM) stimulated 2-deoxy-D-[3H]glucose uptake and elevated GLUT4myc cell surface levels comparable to those achieved by AICAR (2 mM, 60 min) or insulin (100 nM, 20 min) (Fig. 3, A and B). Carbachol doses of 0.1–1 mM were maximally effective in raising cell surface GLUT4myc not shown. Carbachol also acutely stimulated 2-deoxy-D-[3H]glucose uptake in isolated mouse EDL muscles, validating it as a physiologically relevant stimulator of muscle glucose uptake (Fig. 3C). Like acetylcholine, carbachol activates nicotinic and muscarinic acetylcholine receptors. Although C2C12 myotubes express nicotinic acetylcholine receptors (71), they also express muscle-specific muscarinic isomers (3). To identify the acetylcholine receptor isomer involved in the carbachol response of GLUT4myc, agonists and antagonists of the receptors were tested. Figure 3D shows that the nicotinic receptor antagonist α-bungarotoxin markedly reduced the gain in cell surface GLUT4myc stimulated by carbachol. By contrast, the muscarinic acetylcholine receptor antagonist atropine barely affected basal and carbachol-stimulated levels of GLUT4myc (Fig. 3D). In addition, epibatidine, a potent nicotinic acetylcholine receptor agonist, significantly elevated GLUT4myc cell surface levels. Thus, these findings suggest that the GLUT4myc response to carbachol is vastly mediated by nicotinic acetylcholine receptors.

Carbachol activates AMPK in C2C12 myotubes. A large body of work supports the ability of AMPK signaling to elevate glucose uptake in skeletal muscle (20, 31, 44, 45, 77). Furthermore, there is much support for a partial contribution of AMPK activity in the signaling relay of contraction-stimulated glucose uptake in this tissue (29, 41, 45, 76, 77). This may be mediated by AMPK complexes containing the α2-isofrom of the enzyme, and indeed the small molecular activator of AMPK, AICAR, stimulates muscle glucose uptake, a response that is lost in AMPKα2-null mice and mice expressing a dominant inhibitory AMPK transgene in skeletal muscle (29, 31, 41, 45). C2C12 myotubes express both α1- and α2-isofroms of AMPK (Fig. 4A). By contrast, the α2-subunit was barely detectable by immunoblotting in L6-GLUT4myc myotubes (Fig. 4A). Because the total α-subunit content detected by a pan-AMPKα antibody (that recognizes both catalytic subunit isofroms) was greater in C2C12-GLUT4myc than L6-GLUT4myc cells but the AMPKα1 subunit content was similar in both cells, these results suggest that C2C12-GLUT4myc myotubes express significant amounts of the AMPKα2 subunit. AICAR caused the expected phosphorylation of AMPK on the Thr172 regulatory site by allowing LKB1-mediated phosphorylation (59) and increased AMPK-mediated phosphorylation of its substrate ACC (Fig. 4B). Importantly, phosphorylation of Thr172 on AMPK and Ser79 on ACC was also elicited by carbachol, producing a stimulation of at least twofold for AMPK and threefold for ACC (Fig. 4B), suggesting that carbachol-activated acetylcholine receptors lead to AMPK activation. Force generation following a depolarization event induced by motor neurons or uptake of intracellular calcium from the cytosol back into the sarcoplasmic reticulum are two major ATP-consuming processes that raise AMP levels in working muscle. The myosin II ATPase inhibitor BTS reduces force generation in contracting muscle and consequently lowers AMPK activation and contraction-stimulated glucose uptake (1). Indeed, the continued presence of carbachol in C2C12 myotube cultures

Table 1. 2-Deoxy-D-glucose uptake in parental and C2C12-GLUT4myc myotubes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Glucose Uptake</th>
<th>Glucose Uptake Remaining After Indinavir Treatment</th>
<th>Inhibition by Indinavir, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2C12-WT</td>
<td>1.00</td>
<td>0.83 ± 0.05</td>
<td>17</td>
</tr>
<tr>
<td>Basal</td>
<td>1.27 ± 0.03</td>
<td>0.74 ± 0.06</td>
<td>42</td>
</tr>
<tr>
<td>Insulin</td>
<td>1.31 ± 0.07</td>
<td>0.76 ± 0.03</td>
<td>42</td>
</tr>
<tr>
<td>AICAR</td>
<td>1.25 ± 0.08</td>
<td>0.74 ± 0.01</td>
<td>41</td>
</tr>
<tr>
<td>Carbachol</td>
<td>1.60 ± 0.08</td>
<td>0.61 ± 0.04</td>
<td>39</td>
</tr>
<tr>
<td>C2C12-GLUT4myc</td>
<td>1.00</td>
<td>0.83 ± 0.05</td>
<td>17</td>
</tr>
<tr>
<td>Basal</td>
<td>1.48 ± 0.08</td>
<td>0.57 ± 0.02</td>
<td>61</td>
</tr>
<tr>
<td>Insulin</td>
<td>1.63 ± 0.11</td>
<td>0.64 ± 0.04</td>
<td>61</td>
</tr>
<tr>
<td>AICAR</td>
<td>1.60 ± 0.08</td>
<td>0.54 ± 0.09</td>
<td>66</td>
</tr>
</tbody>
</table>

Values are means ± SE. WT, wild type. Inhibition by indinavir. Myotube cultures were placed in serum-free culture medium for 4.5 h, including times to carbachol is vastly mediated by nicotinic acetylcholine receptor isoform involved in the carbachol response of GLUT4myc myotubes. Thus, these findings suggest that the GLUT4myc response to carbachol is vastly mediated by nicotinic acetylcholine receptors.

Indinavir preferentially inhibits glucose from entering cells by GLUT4. The greater the %inhibition of glucose uptake by indinavir indicates greater involvement of GLUT4 in the process. Indinavir preferentially inhibits glucose from entering cells by GLUT4. The greater the %inhibition of glucose uptake by indinavir indicates greater involvement of GLUT4 in the process.

Indinavir preferentially inhibits glucose from entering cells by GLUT4. The greater the %inhibition of glucose uptake by indinavir indicates greater involvement of GLUT4 in the process.

Indinavir preferentially inhibits glucose from entering cells by GLUT4. The greater the %inhibition of glucose uptake by indinavir indicates greater involvement of GLUT4 in the process.

Indinavir preferentially inhibits glucose from entering cells by GLUT4. The greater the %inhibition of glucose uptake by indinavir indicates greater involvement of GLUT4 in the process.
stimulated multiple contractions of individual myotubes for \(\approx 20 \) min, and BTS completely inhibited carbachol-induced contractions in live C\(_{2}C\(_{12}\) myotube cultures (see Supplemental Videos; Supplemental Material for this article is available at the AJP-Endocrinology and Metabolism web site). BTS also caused profound inhibition of the carbachol-mediated phosphorylation of AMPK on Thr\(^{172}\) (Fig. 5A) and phosphorylation of ACC. As expected, BTS was without effect on the phosphorylation of AMPK and ACC in response to direct activation of AMPK by AICAR (Fig. 5A). Importantly, carbachol-stimulated cell surface GLUT4\(_{myc}\) levels were inhibited 56.6 \(\pm\) 0.1% by BTS, but BTS had no effect on AICAR-stimulated gain in cell surface GLUT4\(_{myc}\) (Fig. 5B). Together, these data suggest that carbachol activates AMPK through force generation, and this accounts for a significant proportion of the carbachol-regulated GLUT4\(_{myc}\) response.

Inhibition of AMPK reduces carbachol-induced increases in cell surface GLUT4. The AMPK inhibitor compound C effectively prevented phosphorylation of phospho-Ser\(^{79}\) ACC stimulated by either AICAR or carbachol (Fig. 6A). In addition, compound C largely prevented the AICAR- and carbachol-mediated rise in cell surface GLUT4\(_{myc}\) by 79.6 \(\pm\) 0.1 and...
65.4 ± 0.1%, respectively (Fig. 6B). Of note, compound C did not inhibit insulin-stimulated GLUT4myc levels (data not shown). The extent of inhibition of carbachol-stimulated AMPK signaling and the gain in cell surface GLUT4myc by compound C suggests that carbachol generates signals through AMPK to mobilize GLUT4myc.

To further ascertain the participation of AMPK in the carbachol responses, we used siRNA to reduce expression of AMPKα1 and -α2 subunits simultaneously. By these means, the total AMPKα subunit content was lowered by 79.0 ± 0.1% (Fig. 7A), and the AICAR- or carbachol-stimulated gains in GLUT4myc cell surface levels were diminished significantly, by 36.0 ± 0.1 and 51.6 ± 0.1%, respectively (Fig. 7B). The remaining response could be due to residual AMPK signaling, as we observed for AICAR and carbachol (Fig. 7A), and/or to additional inputs participating in GLUT4 mobilization.

In skeletal muscle, LKB1 is the major upstream kinase of AMPK (36, 60) and regulates AMPK activity by phosphorylating the Thr172 regulatory site (18, 75). Thus, we used siRNA-mediated knockdown of LKB1 to explore its participation in carbachol signaling. By this approach, LKB1 expression was reduced by 84.0 ± 0.1% (Fig. 8A), and concomitantly there was a significant inhibition of the AICAR- or carbachol-dependent gains in cell surface GLUT4myc, by 42.6 ± 0.1 and 43.0 ± 0.1%, respectively (Fig. 8B). As with AMPKα subunit knockdown, the remaining responses to AICAR and carbachol may be ascribed to the remainder of LKB1 and AMPK signaling.

Carbachol raises intracellular calcium in C2C12-GLUT4myc myotubes. Intracellular calcium was the first signaling second messenger implicated in the stimulation of contraction-stimulated glucose uptake in skeletal muscle (22). Recently, using L6 muscle cell cultures, we showed that membrane depolarization by high extracellular potassium leads to a rise in
intracellular calcium and elevations in cell surface GLUT4 and glucose uptake (72). Interestingly, the effect of depolarization on glucose uptake was independent of AMPK in those cells, which also do not contract even when depolarized. In the present study, we find that activation of the acetylcholine receptors by carbachol induces a rise in intracellular calcium in C2C12 myotubes (Fig. 9A). A dose of carbachol as low as 1 μM yielded a small rapid spike in intracellular calcium that recovered near basal levels within 1 min. At 100 μM, carbachol caused iterative calcium cycling (Fig. 9A) that may be ascribed to ongoing calcium-induced calcium release and calcium re-uptake by the sarcoplasmic reticulum. At 1 mM, carbachol induced a marked rise in intracellular calcium that slowly recovered to reach a stable increase of ~50% of the maximal response. The carbachol-elicted rise in surface GLUT4myc levels may require calcium, since preincubation of C2C12-GLUT4myc myotubes with the membrane permeant calcium chelator BAPTA-AM (Fig. 9B) reduced the carbachol response by 63.7 ± 0.2%. On the other hand, BAPTA-AM also inhibited contraction of carbachol-stimulated C2C12 cultures (not shown).

How could cytosolic calcium signal to GLUT4? Recently, Jensen et al. (28) demonstrated that mild muscle contractions lead to phosphorylation of AMPKα1 and -α2 subunits in a CaMKK-dependent manner, and CaMKKB is a newly recognized upstream kinase of the Thr172 site of AMPK catalytic subunits (19, 25, 74). Therefore, we explored the possible contribution of CaMKK signaling in carbachol-induced increases of cell surface GLUT4myc. C2C12-GLUT4myc myotubes express both CaMKKα and CaMKKB isomers (Fig. 10A), and the CaMKK inhibitor STO-609 reduced AMPK and ACC phosphorylation in both resting and carbachol-challenged cells (Fig. 10B). However, despite the reduction in basal AMPK and ACC phosphorylation, STO-609 did not significantly alter the fold stimulation of phosphorylation of either protein in response to carbachol (Fig. 10C). More precisely, carbachol induced a 1.9 ± 0.2- and 2.0 ± 0.1-fold phosphorylation of AMPK and ACC, respectively, in the absence of STO-609, and a 1.7 ± 0.2- and 2.0 ± 0.2-fold phosphorylation of AMPK and ACC, respectively, in the presence of STO-609 (Fig. 10C). Finally, STO-609 had no effect on the carbachol-stimulated rise in cell surface GLUT4myc (Fig. 10D). These results suggest that CaMKK does not play a role in carbachol-regulated GLUT4 traffic. Thus, carbachol raises intracellular calcium and may induce changes in GLUT4 traffic, but if so, they are not relayed via CaMKK signaling to AMPK and may instead involve other mechanisms. Interestingly, recent studies support a contribution of CaMKII in contraction-stimulated muscle glucose uptake (76, 77), and we have observed that a gain in surface levels of GLUT4myc is reduced partly by the CaMKII inhibitor KN-93 (data not shown). Whereas a separate, in-depth study is warranted to tease apart the calcium-dependent arm of signaling, the current study reveals that LKB1-AMPK and calcium are key elements in the mobilization of GLUT4 in response to carbachol in a cellular model of muscle contraction.

DISCUSSION

Contribution of AMPK to contraction-stimulated glucose uptake. Contraction-stimulated glucose uptake in muscle is an important physiological response that has far-reaching implications on whole body glucose homeostasis, insulin sensitivity, and type 2 diabetes (5, 17, 54, 73). Importantly, contraction-stimulated glucose uptake is not impaired in insulin-resistant states such as obesity and type 2 diabetes (47, 58, 68). Thus, a clear understanding of the regulation of glucose uptake by contraction signaling could form the basis of rational drug design for fast-acting stimulators of muscle glucose uptake. Numerous reports have demonstrated that AMPK has a role in contraction-induced signals that regulate muscle glucose uptake (29, 41, 45, 76, 77). However, the link between AMPK and muscle glucose uptake is complex and can depend on the muscle fiber type, AMPK subunit expression, exercise intensity, and the duration of the exercise (4, 30). Although the AMP mimetic AICAR activates AMPK and stimulates muscle glucose uptake, it does not fully recapitulate contraction-stimulated glucose uptake (31, 45) because mice null for the AMPKα2 catalytic subunit no longer display AICAR-stimulated muscle glucose uptake yet have normal contraction-stimulated glucose uptake (31). Furthermore, the skeletal muscle-specific expression of the K45R dominant-negative AMPKα2 mutant fully inhibits AICAR-stimulated glucose uptake, whereas its effect on the contraction response is partial (29, 41, 45). On the other hand, the use of AICAR provides proof of concept that AMPK can mediate regulation of GLUT4 and stimulate...
glucose uptake in muscle. The above literature analysis suggests that AMPK activation is sufficient but is not the only signal regulating glucose uptake in mature skeletal muscle, and it does not reveal the specific impact of contraction on GLUT4 per se.

Generation of a cell system amenable to contraction to elucidate signals regulating GLUT4 translocation. In the present study, we create an in vitro model of cultured C2C12 muscle cells that overexpress GLUT4 myc to evaluate the role of AMPK in regulating glucose uptake and GLUT4 traffic by direct activation (through AICAR) or via the more physiological route of acetylcholine receptor activation (through carbachol). We show that these effects of carbachol are mediated by the nicotinic acetylcholine receptor. We further demonstrate that inhibition of AMPK signaling with compound C, siRNA knockdown of both AMPK catalytic subunits, or LKB1 knockdown each point to involvement of AMPK in the AICAR- or carbachol-induced rise of cell surface GLUT4 myc. GLUT4 myc overexpression in C2C12 myotubes improved the responsiveness of their glucose uptake to various stimuli, but there remains some input of GLUT1 to this response.

In skeletal muscle, LKB1 is the major activator of AMPK (60). Surprisingly, when this enzyme was knocked down in C2C12 myotubes by 84.0 ± 0.1%, we still saw partial AICAR- and carbachol-induced phosphorylation of AMPK and ACC. These results suggest that the residual LKB1 suffices to partially activate AMPK signaling and GLUT4 traffic in response to AICAR and carbachol. Likewise, knockdown of AMPKα subunit expression by 79.0 ± 0.1% (as detected by a pan-AMPKα antibody) allowed significant carbachol- and AICAR-stimulated AMPK activation and partial gain in surface GLUT4 myc. It is conceivable that a greater ablation of LKB1 and AMPK expression is required for complete elimination of signaling via the LKB1-AMPK module and abating GLUT4 myc traffic. Animal studies indeed suggest that low levels of LKB1 activity suffice to allow effective signaling through this module. Indeed, marked depression of signaling is required to demonstrate that LKB1 plays a role in muscle glucose uptake (60).

Alternatively, the above results raise the possibility that the carbachol-induced rise in cytosolic calcium and its effectors may on their own stimulate AMPK in C2C12 myotubes. It was important to test this possibility, since cytosolic calcium can activate AMPK via CaMKK in mature muscles (28). Moreover, low-intensity tetanic contraction of mouse soleus and EDL muscles stimulates AMPK activity and glucose uptake, responses that are inhibited partly by the CaMKK inhibitor STO-609 (28). However, this group has raised concerns regarding the specificity of STO-609 because the drug inhibited activation of the AMPKα2 isoform by contraction, a response held to be mostly LKB1 dependent (30). However, in C2C12 myotubes, despite expressing both CaMKKα and -β isoforms, STO-609 did not affect carbachol-induced increases in GLUT4 myc at the cell surface. STO-609 reduces the basal level of phosphorylation of AMPK and ACC, but in the
incubation with AIC (2 mM, 60 min) or Cch (100 nM) for LKB1, p-Ser79 ACC, p-Thr172 AMPK, and actinin-1. Shown are representative immunoblots of 5 independent experiments.

A: whole cell lysates from AIC- and Cch-treated cultures were immunoblotted for LKB1, p-Ser79 ACC, p-Thr172 AMPK, and actinin-1. Shown are representative immunoblots of 5 independent experiments. B: illustrated are the mean fold changes in cell surface GLUT4 density induced by AIC or Cch in cultures treated with siNR (−) or siLKB1 (+), as indicated, relative to the basal condition; ##P < 0.001, siLKB1 significantly inhibited AIC and Cch responses; *P < 0.01 and *P < 0.05, respectively.

Fig. 8. RNAi-mediated knockdown of LKB1 expression reduces the gain in cell surface GLUT4mcy induced by AIC and Cch. C2C12-GLUT4mcy myotubes were transfected with siRNA oligomers (200 nM) to siNR sequences or to siLKB1 for 72 h prior to experimentation, as described in MATERIALS AND METHODS. Myotube cultures were serum deprived for 4.5 h, including the preincubation with AIC (2 nM, 60 min) or Cch (100 μM, 10 min prior to immunoblotting or 20 min prior to cell surface GLUT4mcy measurement).

A: whole cell lysates from AIC- and Cch-treated cultures were immunoblotted with the carbachol responses; *P < 0.05, respectively. B: illustrated are the mean fold changes in cell surface GLUT4mcy density induced by AIC or Cch in cultures treated with siNR (−) or siLKB1 (+), as indicated, relative to the basal condition; ##P < 0.001, siLKB1 significantly inhibited AIC and Cch responses; *P < 0.01 and *P < 0.05, respectively.

presence of STO-609, carbachol still manages full (2-fold) stimulation of AMPK and ACC phosphorylation compared with the carbachol responses in its absence. Although calcium may lead to preferential activation of AMPKα1 complexes in skeletal muscle (27), we speculate in C2C12 that calcium and CaMKK may regulate the basal activity of AMPKα1 complexes. Similarly, RNA interference of LKB1 expression still allows some stimulation of AMPK signaling by carbachol, but LKB1 is critically important for activation of AMPKα2 complexes in skeletal muscle (60). Future studies will test whether carbachol signaling shows specificity toward α2-complexes of AMPK.

Carbachol stimulation caused a rapid elevation in cytosolic calcium. Concomitantly, AMPK was activated, but this is likely through the contraction-dependent use of ATP and elevation in AMP levels and not by a change in intracellular calcium. This in turn would activate the LKB1-AMPK signaling module. This sequence of events is supported by the observation that the myosin II ATPase inhibitor BTS inhibited carbachol-induced AMPK activation and the cell surface gain in GLUT4mcy without affecting these parameters in response to AICAR. BTS is expected to prevent the carbachol-triggered myosin-actin cross-bridge cycling responsible for C2C12 myotube contraction and relaxation. Indeed, carbachol induces contraction of C2C12 myotube cultures that is completely blocked by BTS. Importantly, in skeletal muscle, BTS does not affect the rise in intracellular calcium evoked by electrical stimulation of skeletal muscle (1, 6).

Hence, the inhibition of carbachol-stimulated phospho-AMPK levels by BTS suggests that the carbachol-induced contractile force most likely raises AMP levels in contracting myotubes. Each attempt to inhibit carbachol-induced gains in cell surface GLUT4mcy through manipulation of AMPK was not fully effective, leaving room to hypothesize that other signaling pathways may regulate GLUT4 traffic in response to carbachol. Whereas carbachol stimulation caused a rapid elevation in cytosolic calcium. Concomitantly, AMPK was activated, but this is likely through the contraction-dependent use of ATP and elevation in AMP levels and not by a change in intracellular calcium. This in turn would activate the LKB1-AMPK signaling module. This sequence of events is supported by the observation that the myosin II ATPase inhibitor BTS inhibited carbachol-induced AMPK activation and the cell surface gain in GLUT4mcy without affecting these parameters in response to AICAR. BTS is expected to prevent the carbachol-triggered myosin-actin cross-bridge cycling responsible for C2C12 myotube contraction and relaxation. Indeed, carbachol induces contraction of C2C12 myotube cultures that is completely blocked by BTS. Importantly, in skeletal muscle, BTS does not affect the rise in intracellular calcium evoked by electrical stimulation of skeletal muscle (1, 6).

Hence, the inhibition of carbachol-stimulated phospho-AMPK levels by BTS suggests that the carbachol-induced contractile force most likely raises AMP levels in contracting myotubes. Each attempt to inhibit carbachol-induced gains in cell surface GLUT4mcy through manipulation of AMPK was not fully effective, leaving room to hypothesize that other signaling pathways may regulate GLUT4 traffic in response to carbachol. Whereas

Carbachol stimulation caused a rapid elevation in cytosolic calcium. Concomitantly, AMPK was activated, but this is likely through the contraction-dependent use of ATP and elevation in AMP levels and not by a change in intracellular calcium. This in turn would activate the LKB1-AMPK signaling module. This sequence of events is supported by the observation that the myosin II ATPase inhibitor BTS inhibited carbachol-induced AMPK activation and the cell surface gain in GLUT4mcy without affecting these parameters in response to AICAR. BTS is expected to prevent the carbachol-triggered myosin-actin cross-bridge cycling responsible for C2C12 myotube contraction and relaxation. Indeed, carbachol induces contraction of C2C12 myotube cultures that is completely blocked by BTS. Importantly, in skeletal muscle, BTS does not affect the rise in intracellular calcium evoked by electrical stimulation of skeletal muscle (1, 6).

Hence, the inhibition of carbachol-stimulated phospho-AMPK levels by BTS suggests that the carbachol-induced contractile force most likely raises AMP levels in contracting myotubes. Each attempt to inhibit carbachol-induced gains in cell surface GLUT4mcy through manipulation of AMPK was not fully effective, leaving room to hypothesize that other signaling pathways may regulate GLUT4 traffic in response to carbachol. Whereas
CaMKK is not a likely candidate, CaMKII may be, since KN93 partly interferes with carbachol-regulated GLUT4 traffic.

Overall, our data support a model whereby carbachol produces contraction of C2C12 myotube cultures, the consequential activation of the AMP-sensitive LKB1-AMPK signaling module, and this contributes to the elevation of GLUT4 at the plasma membrane. Additional input into this response is mediated via the rise in cytosolic calcium, which, however, does not act on the CaMKK-AMPK signaling module. In future studies, we hope to uncover the calcium-dependent signaling pathway(s) that regulates GLUT4 traffic and glucose uptake in response to carbachol and other contraction-like stimuli.

How could AMPK and contraction regulate GLUT4 traffic? Recently, several laboratories have shown that contraction or AICAR administration leads to phosphorylation of the Rab-GAP AS160/Tbc1d4 in cultured cells (13, 67), rodent muscle (2, 38, 69), and human muscle (23, 64). This phosphorylation is AMPK dependent but Akt independent (38, 69). Interestingly, a mutant AS160 insensitive to negative regulation by upstream kinases reduced contraction-stimulated glucose up-
take when expressed in skeletal muscle (39). A related Rab-GAP, Tbc1d1, abundant in skeletal muscle, is also phosphorylated in response to AICAR and contraction in rodent muscle (12, 65). AS160/Tbc1d4 and Tbc1d1 are expressed in C2C12 myotubes and become phosphorylated in response to carbachol and AICAR (Niu W, Bilan PJ, Ishikura S, and Klip A, unpublished observations). In future studies, we will define the roles of each of these proteins and their Rab-GTPase targets in the GLUT4 traffic in response to carbachol and other contraction-like stimuli.

In conclusion, muscle contraction in vivo and its stimulation of glucose uptake depend on multiple signaling pathways, including AMPK modules and a less-defined calcium-dependent mechanism. Progress in understanding this important physiological regulatory mechanism of glucose homeostasis has relied on studies of skeletal muscle tissue. Cultured cells are homogeneous and easily manipulated by using a variety of gene transfer and RNAi-mediated techniques. Yet to date, the study of contraction-stimulated glucose uptake does not benefit from a suitable in vitro model that would reveal paradigms subsequently testable in mature muscle. In the present study, we have characterized a C2C12–GLUT4myc cell line that responds to carbachol as a contraction-inducing stimulus. The observed carbachol-induced gain in cell surface GLUT4 recapitulates the contraction response in that it requires both AMPK- and calcium-dependent signals. Future work will focus on identifying the calcium-dependent signals and how signaling pathways interface with the GLUT4 traffic molecular machinery.

ACKNOWLEDGMENTS

We thank Benjamin E. Steinberg and Dave Mason for technical advice with live-cell light microscopy.

GRANTS

S. Ishikura was supported by a fellowship from the Banting and Best Diabetes Centre, University of Toronto. J. D. Schertzer was supported by fellowships from the Natural Sciences and Engineering Research Council of Canada and the Canadian Diabetes Association. A. Contreras-Ferrat was supported by a bilateral Canada-Chile short-term studentship from the Comisión Nacional de Ciencia y Tecnología (CONICYT), Chile. This work was supported by a joint Canadian Institutes of Health Research and the National Natural Science Foundation of China (NSFC) grant to both A. Klip (no. FRN-82420) and W. Niu (no. 30611120532), by a NSFC grant (no. 30570912) to W. Niu, and by Tianjin Municipal Science and Technology Commission grants (nos. 09JCYZDJ04500 and 07JCYBDIC07900) to W. Niu. Support to S. Lavandero came from CONICYT (FONDECYT Grant no. 1080436 and FONDAP Grant no. 15010006).

DISCLOSURES

No conflicts of interest are declared by the author(s).

REFERENCES

25. Hurley RI, Anderson KA, Franzon JM, Kemp BE, Means AR, Witters LA. The Ca(2+)/calmodulin-dependent protein kinase kinases are...

