Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men

Olasunkanmi A. J. Adegoke,1,2 Stéphanie Chevalier,2,3 José A. Morais,2,3 Réjeanne Gougeon,2,3 Scot R. Kimball,4 Leonard S. Jefferson,4 Simon S. Wing,3,5 and Errol B. Marliss2,3

1School of Kinesiology and Health Science, York University, Toronto, Ontario; and 2McGill Nutrition and Food Science Centre, McGill University and 3Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Centre/Royal Victoria Hospital, Montreal, Quebec, Canada; 4Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and 5Polypeptide Hormone Laboratory, McGill University, Montreal, Quebec, Canada

Submitted 5 September 2008; accepted in final form 24 October 2008

Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men. Am J Physiol Endocrinol Metab 296: E105–E113, 2009. First published October 28, 2008; doi:10.1152/ajpendo.90752.2008.—Since maximum anabolism occurs postprandially, we developed a simulated fed state with clamped hyperinsulinemia, physiological hyperglycemia, and hyperaminoacidemia (Hyper-3) and explored muscle cellular mechanisms. Whole body [1-13C]leucine and [3-3H]glucose kinetics in healthy men were compared between hyperinsulinemic, euglycemic, isoaminoacidemic (Hyper-1, nonoxidative leucine Rd [rate of disappearance (synthesis)] was stimulated more (45 ± 4 vs. 24 ± 4 µmol/min, P < 0.01) and endogenous Rd [rate of appearance (breakdown)] was inhibited similarly; hence net balance increased more (86 ± 6 vs. 49 ± 2 µmol/min, P < 0.001). Glucose Rd was similar; thus Hyper-3 metabolic clearance rate (331 ± 23 vs. 557 ± 41 ml/min, P < 0.0005) and Räd/insulin (M, 0.65 ± 0.10 vs. 1.25 ± 0.10 mg·min⁻¹·pmol⁻¹·l, P < 0.0001) were less, despite higher insulin (798 ± 74 vs. 450 ± 24 pmol/l, P < 0.0005). In vastus lateralis muscle biopsies, phosphorylation of Akt (P = 0.025), mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K1; P = 0.008), S6 (P = 0.049), and 4E-binding protein 1 (4E-BP1; P = 0.001) increased. With decreased eukaryotic initiation factor 4E (eIF4E)-4E-BP1 complex (P = 0.01), these are consistent with increased mTORC1 signaling and translation initiation of protein synthesis. Although mRNA expression of ubiquitin, MAFbx 1, and MuRF-1 was unchanged, total ubiquitinated proteins decreased 20% (P < 0.01), consistent with proteolysis suppression. The Hyper-3 clamp increases whole body protein synthesis, net anabolism, and muscle protein translation initiation pathways and decreases protein ubiquitination. The main contribution of hyperaminoacidemia is stimulation of synthesis rather than inhibition of proteolysis, and it attenuates the expected increment of glucose disposal.

transcription initiation; ubiquitin pathway; leucine kinetics; glucose turnover; insulin resistance

THE HYPERINSULINEMIC EUGLYCEMIC CLAMP is the “gold standard” for determining in vivo insulin sensitivity of glucose metabolism. Although the conventional clamp achieves hyperinsulinemia within the postprandial range, it does not replicate postmeal circulating metabolite concentrations. Indeed, it generates hypoaminoacidemia by insulin inhibition of protein catabolism, thereby preventing the testing of insulin sensitivity of protein anabolism by decreasing amino acid (AA) availability (6, 38, 46). Since insulin stimulation of protein synthesis and inhibition of proteolysis are unambiguously established in vitro, and abnormal protein metabolism occurs in both type 1 (45) and type 2 diabetes (17, 19) we have previously used an hyperinsulinemic, euglycemic, isoaminoacidemic clamp (8) to explore whole body protein turnover. This has established the presence of postabsorptive and clamp insulin resistance of protein metabolism in obesity (10), type 2 diabetes (37), and aging (7) and, additionally, sex differences in clamp responses (9). However, this “Hyper-1” clamp does not replicate postprandial physiology, in which plasma insulin, glucose, and AA concentrations increase and free fatty acids (FFA) decrease. Daily repletion of overnight protein depletion must take place at high rates postprandially. We therefore developed a simulated fed steady-state “Hyper-3” clamp with postprandial levels of insulin, glucose, and AA.

Muscle is a principal contributor to whole body substrate metabolism. Since cellular mechanisms responsible for the above insulin-resistant states have not been defined, we combined end points of whole body kinetics with those of regulation of protein metabolism in muscle biopsies. Nutrients, particularly the AA leucine, and insulin regulate protein synthesis by mediating mRNA translation. Leucine and insulin signaling mechanisms converge at the level of the mammalian target of rapamycin (mTOR) (22, 50). mTOR can exist in two distinct complexes, mTORC1 and 2. Activated mTORC1 stimulates translation initiation by phosphorylating 4E-binding protein 1 (4E-BP1), favoring the dissociation of eukaryotic translation initiation factor 4E (eIF4E)-eIF4G complex. mTORC1 also promotes translation via the phosphorylation of the serine threonine kinase S6K1 (22, 50). In diabetic rats, insulin-independent stimulation of protein synthesis by leucine occurs (3) via eIF4G phosphorylation and its association with eIF4E, without change in mTORC1 signaling to 4E-BP1 or S6K1 (4). Studies of regulation of these and other pathways during oral feeding in humans are demanding because of non-steady-state circulating hormones and substrates and require extremely complex experimental protocols. Addi-
tionally, since nonphysiological hyperaminoacidemia has been shown to restrain insulin-mediated glucose uptake in euglycemic clamps (27, 47), quantifying this response in fed steady-state conditions should permit elucidation of whether this observation has physiological/pathophysiological implications.

The ubiquitin system is probably the principal regulator of skeletal muscle proteolysis, although other proteases including calpains and cathepsins are involved (21, 34). Ubiquitin is covalently conjugated to lysine residues of proteins via sequential activities of ubiquitin-activating and -conjugating enzymes and ubiquitin-protein ligases. The resultant polyubiquitinated proteins are degraded by the 26S proteasome. In muscle atrophy, mRNA expression of ubiquitin and the ubiquitin-protein ligases MAFbx/Atrogin 1 and MuRF-1, increases (28) and ubiquitin-proteins are degraded by the 26S proteasome. The resultant polyubiquitinated covalently conjugated to lysine residues of proteins via sequential activities of ubiquitin-activating and -conjugating enzymes and ubiquitin-protein ligases. The resultant polyubiquitinated proteins are degraded by the 26S proteasome. In muscle atrophy, mRNA expression of ubiquitin and the ubiquitin-protein ligases MAFbx/Atrogin 1 and MuRF-1, increases (28) and ubiquitin-proteins are degraded by the 26S proteasome. The resultant polyubiquitinated.

Hyperinsulinemic, hyperglycemic, hyperaminoacidemic clamp protocol. The Hyper-3 clamp is a modification of our Hyper-1 protocol (8). The postprandial target glucose of 8 mmol/l and branched-chain amino acids (BCAA) of 700 μmol/l were established from peak responses of seven similar subjects after a 714-kcal, 108 g carbohy-
drati, 30 g protein meal (data from prior study, not shown). At 0800, a catheter was inserted in an antecubital vein for infusions and one was placed in the contralateral hand vein (retrogradely) for blood sampling. The hand was in a heating box at 65–70°C to arterialize the venous blood. Glucose turnover was studied with a primed [22 μCi (814 kBq)] continuous infusion [0.22 μCi/min (8.14 kBq/min)] of [3-3H]glucose (PerkinElmer, Boston, MA) begun 180 min before insulin. Concurrently with the titrated glucose and after 0.1 mg/kg NaH13CO3 (Mass Trace, Woburn, MA) orally, leucine kinetics were studied with a primed (0.5 mg/kg), constant (0.008 mg·kg−1·min−1) infusion of [13C]leucine (Sigma-Aldrich, St. Louis, MO) (33). A primed, constant infusion of human insulin (Humulin R; Eli Lilly, Toronto, ON, Canada) was given at 40 μU·m−2·min−1, from 0 to 180 min. From 4 min, 20% (wt/vol) potato starch-derived glucose (Avebe, Foxhol, Netherlands) with added [3-3H]glucose was infused at rates based on measurements every 5 min (15). BCAA were clamped with a variable infusion of an AA solution (10% TrophAmine; B Braun Medical, Irvine, CA) based on measurements every 5 min. The 10 subjects of the Hyper-1 clamp received the same infusions, but with glycemia maintained at 5.5 mmol/l and BCAA at individual postabsorptive concentrations.

In the Hyper-3 subjects, before and 2 h after start of the clamp, ~100-mg vastus lateralis muscle biopsies were obtained with a Bergstrom needle under sterile precautions and anesthesia (Xylocaine 2%, Astra-Zeneca Canada, Mississauga, ON, Canada), and aliquots were either immediately frozen in liquid nitrogen or homogenized in buffer.

Additional blood samples were collected at baseline and every 10 min for 40 min before clamp and before 120 and 180 min of the clamp (with 30-min sampling otherwise) for substrate, hormone, and isotopic enrichment determinations. Indirect calorimetry was performed for 20 min during these intervals. Glucose turnover was calculated with a method for non-steady-state kinetics (5). Expired air was collected in evacuated tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ). Leucine kinetics were calculated with plasma α-keto-isocaproic acid (α-KIC) as an index of the precursor pool enrichment (reciprocal model) (33). Calculations of [13C]leucine oxidation account for the proportion of 13CO2 not fully recovered, which varies according to physiological state. We determined the recovery factors previously from [13C]bicarbonate studies as being 67.0% for the postabsorptive state and 79.9% for the Hyper-1 protocol (8). A published postprandial state factor of 82.4% was used for Hyper-3 conditions (30). Moreover, dilution of 13CO2 natural abundance from infusions was determined in separate experiments for Hyper-1 (8) and in two Hyper-3 subjects, under the same experimental conditions but with no traces. Dilution factors so determined were 10.1% for Hyper-1 and 13.0% for Hyper-3. Data are presented as units per minute, because the two groups did not differ in body composition. Significance was tested with variables factored for body weight and for FFM, and the outcomes were identical (not shown). Furthermore, responses during the two clamps were shown to be independent of indexes of body composition in this homogeneous group. Data are presented as mean values for the basal period before insulin infusion and for the steady state of the hyperinsulminemic period, including time of biopsy, for the leucine kinetics.

Assays. Glucose was measured by glucose oxidase (GM7 Micro-Stat; Analox Instruments USA, Lunenberg, MA); insulin, glucagon and C-peptide by radioimmunoassay (Linco, St. Charles, MO); and glucose specific activity as previously described (7–10, 37). Plasma total BCAA were measured by rapid enzymatic fluorometric assay (8). Plasma AA were determined by HPLC (Beckman Coulter Instruments, Palo Alto, CA). The 13C enrichment of plasma α-KIC was determined by gas chromatography-mass spectrometry (5988A; Hewlett-Packard, Palo Alto, CA) after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (Regis Technologies, Morton Grove, IL). Expired air was analyzed for 13CO2 enrichment

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>Hyper-1</th>
<th>Hyper-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Age, yr</td>
<td>27±1</td>
<td>29±2</td>
</tr>
<tr>
<td>Height, cm</td>
<td>179±2</td>
<td>177±2</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>69.1±1.9</td>
<td>66.6±2.2</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>21.7±0.5</td>
<td>21.2±0.6</td>
</tr>
<tr>
<td>FFM, kg</td>
<td>59.4±2.1</td>
<td>58.3±1.7</td>
</tr>
<tr>
<td>Percent body fat, %</td>
<td>13.8±1.4</td>
<td>12.4±1.1</td>
</tr>
<tr>
<td>Energy intake, MJ/day</td>
<td>11.5±0.4</td>
<td>11.1±0.4</td>
</tr>
<tr>
<td>Protein intake, g/day</td>
<td>103±3</td>
<td>101±3</td>
</tr>
<tr>
<td>REE, MJ/day</td>
<td>6.8±0.2</td>
<td>6.5±0.3</td>
</tr>
</tbody>
</table>

Values are means ± SE. BMI, body mass index; FFM, fat-free mass; REE, resting energy expenditure. Hyper-1, hyperinsulinemia + euglycemia + isoaminoacidemia; Hyper-3, hyperinsulinemia + hyperglycemia + hyperaminoacidemia.
by isotope ratio mass spectrometry on a Micromass 903D (Vacuum Generators, Winsford, UK).

Analysis of translation initiation factors and signaling proteins. Immediately after biopsy, ~30 mg was homogenized in 7 volumes of buffer A (in mM: 20 HEPES, 2 EGTA, 50 NaF, 100 KCl, 0.2 EDTA, 50 glycyl-glycerophosphate, pH 7.4) supplemented with 1 mM DTT, 1 mM benzamidine, 0.5 mM sodium vandate, and protease inhibitor cocktail (P8340; Sigma-Aldrich Canada, Oakville, ON, Canada) and then centrifuged 5 min at 1,000 g and 4°C. To immunoprecipitate eIF4E (23, 24), an aliquot of the supernatant was rotated overnight at 4°C with anti-eIF4E antibody. The antibody-antigen complex was collected by incubation for 1 h with Biomag goat anti-mouse IgG beads (no. 310004; Qiagen, Mississauga, ON, Canada), prewashed in 1% nonfat powdered milk in buffer B (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.1% 2-mercaptoethanol, 0.5% Triton X-100). The beads were recovered with a magnetic stand (Promega, Madison, WI) and were washed twice with buffer B and once with modified buffer B (50 mM Tris-HCl, 500 mM NaCl). Bound proteins were eluted by resuspending the beads in SDS-PAGE loading buffer containing 0.1 M sodium carbonate, pH 8.3, 4% SDS, and 1% 2-mercaptoethanol. Each immunoprecipitation was eluted by resuspending the beads in SDS-PAGE loading buffer B and reverse (R) primers (5'-GCTGAATAGC; MuRF-1 F: ATCTTCCAGGCTGCAAATC, R: GAAGGACATGAGCAGCTGGAAGATGG, R: GAGCCCAGTGACACCATCG; Atrogin-1 F: TCGGATCCATGGCCACCACTGTGAC, R: TCGGATCCCATGCGCATGCATGGCTATCACGC, R: TCGGATCCATGGACACCATGGTATACGC) and then used in quantitative PCR (Tables 2 and 3) were comparable between groups. Plasma AA concentrations (Table 4) in the Hyper-3 basal state were comparable to those of the isoaminoacidemic clamp in Hyper-1 subjects (8). The latter had established the suitability of TrophAmine for maintaining individual AA within their ranges of normal postabsorptive concentrations during the clamp.

Clamped plasma total BCAA, AA infusion rates, and totals infused in Hyper-3 were two- to threefold greater than in Hyper-1 (Table 2). The 25.7 g of AA infused in Hyper-3 would be the amount ingested in a 700-kcal meal with 15% of energy as protein, similar to our test meal. In contrast, maintaining hyperglycemia at 7.9 mmol/l in Hyper-3 required little greater glucose infusion rate than that to maintain euglycemia at 5.5 mmol/l in Hyper-1, because the increment in R4 was not greater. The total glucose infused was 80 ± 8 g in Hyper-1 and 79 ± 6 g in Hyper-3. Therefore, the glucose metabolic clearance was 40% less. This occurred despite 77% higher serum insulin, resulting in M values one-half those of the Hyper-1 clamp. The higher insulin was due to increased endogenous insulin secretion, as indicated by plasma C-peptide. Although C-peptide was measured in Hyper-1, absolute values were lower because of loss on storage. However, there was no increase during the clamp (not shown). The hyperglycemia and hyperaminoacidemia were likely responsible for the higher insulin and C-peptide. Glucagon did not decrease (perhaps
was no effect of the clamp on serine, glutamine, citrulline, or aspartate, methionine, isoleucine, and arginine and a small increase in alanine. Total essential AA increased 70% and total AA 36%. Of note is that the peak test meal concentrations (μmol/l) of the following individual and grouped AA did not differ from those during Hyper-3: leucine, 261 ± 9; isoleucine, 159 ± 9; valine, 297 ± 8; total essential, 1,541 ± 73; and total AA, 3,632 ± 215. In Hyper-1, the clamp total essential (945 ± 20 μmol/l) and total (2,564 ± 40 μmol/l) AA were identical to the basal Hyper-3 concentrations (939 ± 29 and 2,467 ± 87 μmol/l, respectively).

The muscle analyses showed a marked increase in Akt phosphorylation (Fig. 2A) and changes in the components of protein synthetic and catabolic pathways, compared with the postabsorptive state: a trend toward increased phosphorylation of mTOR (Fig. 2B) and a significant increase in that of S6K1 (Fig. 3A) and 4E-BP1 (Fig. 4A), downstream substrates of mTOR, as well as of S6 ribosomal protein, substrate of S6K1 (Fig. 3B), were found. The amount of eIF4E bound to 4E-BP1 as an inactive complex was decreased (Fig. 4B). Expression of mRNAs of components of ubiquitin-dependent proteolysis (ubiquitin, ligases MAFbx/Atrogin-1 and MuRF-1) did not change (Fig. 5A). However, there was a significant reduction of ubiquitinated proteins (P < 0.01; Fig. 5B).

DISCUSSION

Our novel Hyper-3 clamp simulates a fed steady state. The amounts of carbohydrate and protein infused over 3 h were comparable to those of our test meal that defined the postabsorptive state. AJP-Endocrinol Metab • VOL 296 • JANUARY 2009 • www.ajpendo.org
Table 4. Plasma amino acid concentrations during Hyper-3 clamp

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Basal</th>
<th>Clamp 120 min</th>
<th>Clamp 180 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taurine</td>
<td>41±3</td>
<td>51±6*</td>
<td>48±5*</td>
</tr>
<tr>
<td>Aspartate</td>
<td>8±1</td>
<td>18±1†</td>
<td>18±1†</td>
</tr>
<tr>
<td>Asparagine‡</td>
<td>44±2</td>
<td>30±2†</td>
<td>25±2*</td>
</tr>
<tr>
<td>Serine</td>
<td>77±6</td>
<td>89±9</td>
<td>88±9</td>
</tr>
<tr>
<td>Glutamate</td>
<td>53±2</td>
<td>68±3†</td>
<td>69±3†</td>
</tr>
<tr>
<td>Glutamine‡</td>
<td>544±26</td>
<td>522±39</td>
<td>507±40</td>
</tr>
<tr>
<td>Glycine</td>
<td>219±18</td>
<td>262±27*</td>
<td>257±27*</td>
</tr>
<tr>
<td>Alanine</td>
<td>271±13</td>
<td>296±16*</td>
<td>284±15*</td>
</tr>
<tr>
<td>Citrulline‡</td>
<td>41±3</td>
<td>40±3</td>
<td>40±3</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>65±5</td>
<td>61±3</td>
<td>56±3</td>
</tr>
<tr>
<td>Threonine</td>
<td>123±7</td>
<td>153±11†</td>
<td>149±11†</td>
</tr>
<tr>
<td>Methionine</td>
<td>23±1</td>
<td>58±3†</td>
<td>59±3†</td>
</tr>
<tr>
<td>Valine</td>
<td>205±8</td>
<td>280±8†</td>
<td>286±9†</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>55±3</td>
<td>150±7†</td>
<td>152±7†</td>
</tr>
<tr>
<td>Leucine</td>
<td>123±6</td>
<td>269±8†</td>
<td>274±9†</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>65±1</td>
<td>110±4†</td>
<td>110±5†</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>46±2</td>
<td>73±3†</td>
<td>73±3†</td>
</tr>
<tr>
<td>Lysine</td>
<td>226±16</td>
<td>391±43†</td>
<td>390±47†</td>
</tr>
<tr>
<td>Histidine</td>
<td>74±2</td>
<td>124±7†</td>
<td>122±8†</td>
</tr>
<tr>
<td>Arginine</td>
<td>84±2</td>
<td>206±9†</td>
<td>210±10†</td>
</tr>
<tr>
<td>Ornithine</td>
<td>83±15</td>
<td>134±25†</td>
<td>135±25†</td>
</tr>
<tr>
<td>Total essential AA</td>
<td>939±29</td>
<td>1,607±79†</td>
<td>1,614±85†</td>
</tr>
<tr>
<td>Total AA</td>
<td>2,467±7</td>
<td>3,384±106†</td>
<td>3,350±206†</td>
</tr>
</tbody>
</table>

Values (in μmol/l) are means ± SE. AA, amino acids. *P < 0.05, †P < 0.01 vs. Basal; all AA remained constant between 120 and 180 min. ‡Not present in AA solution infused.

Target clamp glycemia and aminoacidemia. The isotopic tracer/tracee steady states that were achieved (not shown) fulfill the prerequisite for the glucose and leucine kinetic methods used. In the Hyper-1 clamps the hyperinsulinemia approximated our test meal peak postprandial concentrations (~450 pmol/l). The insulin infusion rate was the standard used in studies of insulin resistance of glucose metabolism (13, 31) and used in our previous studies (7–10, 37). However, in the Hyper-3 clamp, because of the endogenous insulin response to hyperglycemia plus hyperaminoacidemia, serum levels were further elevated (~800 pmol/l). Insulin-mediated effects in the Hyper-3 clamp might thus be greater than in the Hyper-1 clamp, unless their maximal responses had already been achieved. This is the case for endogenous glucose production, which was totally suppressed, as reported previously (26). The absence of significant differences in suppression of whole body protein catabolism also demonstrates that the greater hyperinsulinemia was unable to decrease it further, consistent with absence of further suppression at >300 pmol/l (46). Likewise, the hyperaminoacidemia had no further suppressive effect.

The greater hyperinsulinemia in the absence of hyperaminoacidemia would have been expected to further increase glucose uptake, whose dose response has been shown to be half-maximal at 800 and maximal above 6,000 pmol/l (25, 26). Nevertheless, despite 77% higher insulin in Hyper-3 glucose Rd was not significantly different. This indicates that physiological hyperaminoacidemia restrains the increase of insulin-mediated glucose uptake (14, 44), as does even greater hyperaminoacidemia (27, 47). Furthermore, hyperglycemic, hyperinsulinemic clamps (that would cause
hypoaminoacidemia) increase glucose R_d more than with euglycemia (32). In our study, at 8 mmol/l glycemia both metabolic clearance rate and M values were less than in the Hyper-1 clamp (Table 2). Furthermore, the lower FFA in Hyper-3 points to AA being responsible, because if there is an effect at this very low concentration it would be expected to be associated with greater insulin-mediated glucose uptake.

We are unaware of previous hyperinsulinemic clamp studies that combined clamped hyperglycemia with hyperaminoacidemia in normal subjects. In euglycemic somatostatin clamps with insulin at 430 pmol/l, lower muscle glucose uptake by the supraphysiological elevation of AA (vs. hypoaminoacidemia) was termed “insulin resistance” (27, 47). Although not always found, this effect has been reported previously (1, 42, 44). Our data are compatible with an alternative interpretation: rather than resistance to insulin, a physiological response to concurrent glucose and AA provision. Despite the greater hyperinsulinemia, our physiological hyperaminoacidemia was still remarkably effective at restraining the expected increment in glucose uptake. Although we cannot provide mechanistic insights into this effect, previous data suggest that overactivation of S6K1 is responsible for attenuating the insulin signaling of glucose metabolism by serine phosphorylation of insulin receptor substrate (IRS)-1 (36, 47).

The Hyper-3 leucine kinetic data (Table 3, Fig. 1) demonstrate 80% greater protein accretion than in the Hyper-1 clamp. This is probably attributable to the threefold greater leucine (± other AA) infusion, with a possible contribution from the higher insulin. Interestingly, the percent increase in serum total essential AA is the same as that in net balance. The positive leucine balance of 56 µmol/min would be equivalent over 3 h to accretion of a maximum of 17 g of protein [assuming 590 µmol leucine/g protein (49)], or 2/3 of the 25.7 g infused. If the fasting period of ~12 h from the end of absorption of the evening meal until the beginning of the clamp had a constant net protein catabolic rate of 27.0 µmol/min (Table 3), this could represent net catabolism of up to 32.9 g of protein. Therefore, the clamp conditions allowed for repulsion of a substantial proportion of the protein lost overnight, further supporting the physiological relevance of this method. Considering the total glucose and AA infused over the 3 h in the two experiments, if the leucine oxidized is extrapolated to protein oxidized (29 vs. 11 g in Hyper-1), it could account for the 16-g-lower glucose uptake in Hyper-3. Although this is an overestimate, it still remains consistent with the restrained increment in glucose uptake in Hyper-3 being a physiological response to the availability of alternate energy substrate provided in excess of its maximal possible rate of incorporation.
into protein. The use of AA as fuel when supplied in excess of the requirement for protein synthesis has been reviewed (39). Further studies are required to distinguish between the metabolic states in which hyperaminoacidemia affects glucose regulation normally from those in which it causes insulin resistance.

Because muscle is a major contributor to whole body protein metabolism we determined whether changes at the molecular level in the muscle biopsies were consistent with those in whole body measurements. Akt activation by insulin affects both the synthetic and proteolytic pathways (40, 43). The Hyper-3 clamp increased phosphorylation of Akt, but that of mTOR did not reach statistical significance (P = 0.08). However, increased phosphorylation downstream from mTORCl occurred, of S6K1 and its substrate S6 ribosomal protein, as well as of 4E-BP1, accompanied by a reduction in inhibitory eIF4E-4E-BP1 complex. These changes are consistent with increased translation initiation and protein synthesis. Thus, although the possibility of mTORCl-independent activation cannot be excluded, the change in phosphorylation of the downstream targets without significant change in mTOR phosphorylation is more likely attributable to the variance of individual subject responses, and probably contributed to by its rapid and transient phosphorylation observed in other systems. Furthermore, mTORCl activity is regulated by binding of the substrate adaptor raptor, which may be of more physiological relevance than Ser 2448 phosphorylation of mTOR (35, 50).

We are unaware of published data on the fed-state regulation of molecular steps of muscle proteolysis in human subjects. Fasting in rodents increases mRNA levels of ubiquitin and the ubiquitin protein ligases MAFbx and MuRF-1 (28), and feeding suppresses them. Fasting also increases ubiquitinated protein levels (48). Since Akt activation suppresses MAFbx mRNA via phosphorylation of FOXO proteins, its suppression was anticipated. However, the 2-h fed state before biopsy was likely too short for changes in gene expression to be observed, although we cannot exclude the possibility that expression of other proteases was modified. Our methodology is able to detect such suppression, because a marked decrease of MuRF-1 and MAFbx mRNA was observed in similar biopsies after intravenous glucose and AA were given perioperatively to patients undergoing abdominal surgery (41). The Hyper-3 clamp did suppress ubiquitinated protein levels by 20%, consistent with decreased ubiquitin-dependent proteolysis. Such reduction implies 1) decreases in the amount and/or activity of ligases that are independent of changes in transcription and/or 2) increases in the amount and/or activity of the deubiquitinating enzymes that remove ubiquitin from proteins (12). Ligases and deubiquitinating enzymes can be regulated by phosphorylation (20). It remains to be determined whether activated Akt or its effector phosphorylation through the insulin signaling cascade may regulate these enzymes by phosphorylation/dephosphorylation.

In conclusion, we have used a fed-state clamp to quantify in vivo responses and concurrently characterize the simultaneous regulation of molecular steps involved in protein synthetic and ubiquitin-dependent proteolytic pathways and have shown that these components respond to the fed state in the skeletal muscle. We previously demonstrated alterations in whole body protein metabolism in obesity, type 2 diabetes, and aging. This novel, physiologically relevant clamp, combined with muscle biopsies, will permit concurrent characterization of the synthetic and ubiquitin-proteasome contribution to catabolic mechanisms of insulin resistance of protein metabolism and of the interactions of protein with glucose metabolism in these states and identification of putative sites of defects.

ACKNOWLEDGMENTS

We thank Mary Shingler, Josie Plescia, Karen French, Marie Lamarche, Ginette Sabourin, Concettina Nardolillo, and Donato Brunetti for their assistance.

All authors contributed to the study design, analysis, and interpretation.

GRANTS

This work was supported by grants from the Canadian Institutes of Health Research to E. B. Marliss (MOP-62889) and S. S. Wing (MOP-82734) and from the National Institute of Diabetes and Digestive and Kidney Diseases to L. S. Jefferson (DK-15658) and salary awards to R. Gougeon from the McGill University Health Centre Research Institute and to S. Chevalier, J. A. Morais, and S. S. Wing from the “Fonds de recherche en santé du Québec.”
REFERENCES

