Local activation of the IκK-NF-κB pathway in muscle does not cause insulin resistance

Emma Polkinghorne,1,2 Quintin Lau,1 Gregory J. Cooney,1,3 Edward W. Kraegen,1,2,3 and Mark E. Cleasby1

1Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney; 2School of Medical Sciences, Faculty of Medicine, and 3St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia

Submitted 17 August 2007; accepted in final form 19 November 2007

Polkinghorne E, Lau Q, Cooney GJ, Kraegen EW, Cleasby ME. Local activation of the IκK-NF-κB pathway in muscle does not cause insulin resistance. Am J Physiol Endocrinol Metab 294: E316–E325, 2008. First published November 20, 2007; doi:10.1152/ajpendo.00537.2007. —Insulin resistance of skeletal muscle is a major defect in obesity and type 2 diabetes. Insulin resistance has been associated with a chronic subclinical inflammatory state in epidemiological studies and specifically with activation of the inhibitor κB kinase (IκK)-nuclear factor-κB (NF-κB) pathway. However, it is unclear whether this pathway plays a role in mediating insulin resistance in muscle in vivo. We separately overexpressed the p65 subunit of NF-κB and IκBKβ in single muscles of rats using in vivo electrotransfer and compared the effects after 1 wk vs. paired contralateral control muscles. A 64% increase in p65 protein (P < 0.001) was sufficient to cause muscle fiber atrophy but had no effect on glucose disposal or glycogen storage in muscle under hyperinsulinemic-euglycemic clamp conditions. Similarly, a 650% increase in IκKβ expression (P < 0.001) caused a significant reduction in IκK protein but also had no effect on clamp glucose disposal after lipid infusion. In fact, IκBKβ overexpression in particular caused increases in activating tyrosine phosphorylation of insulin receptor substrate-1 (24%; P = 0.02) and serine phosphorylation of Akt (23%; P < 0.001), implying a moderate increase in flux through the insulin signaling cascade. Interestingly, p65 overexpression resulted in a negative feedback reduction of 36% in Toll-like receptor (TLR)-2 (P = 0.03) but not TLR-4 mRNA. In conclusion, activation of the IκBKβ-NF-κB pathway in muscle does not seem to be an important local mediator of insulin resistance.

inhibitor κ kinase-nuclear factor-κB pathway; skeletal muscle; Toll-like receptors; in vivo electrotransfer

TYPE 2 DIABETES AND OBESITY are intimately related and rapidly increasing human health problems worldwide. Insulin resistance in skeletal muscle is regarded as an essential prerequisite for the development of type 2 diabetes, manifesting primarily as impaired insulin-stimulated glucose disposal. It is now widely accepted that inappropriate deposition of lipids in skeletal muscle is a principal cause of impaired muscle glucose disposal (21, 34). However, the molecular mechanisms linking these phenomena have yet to be fully established.

Several lines of evidence now exist to implicate a subclinical inflammatory state in the etiology of insulin resistance. Numerous epidemiological associations have been made between insulin resistance and either increased plasma levels of acute phase proteins released by the liver (17, 37) or proinflammatory cytokines, most notably tumor necrosis factor (TNF)-α (45). TNF-α is one of a number of cytokines/adipokines released in increased quantities by adipose tissue in obese humans (24) and in animal models of obesity (25) and has been shown to impair peripheral glucose disposal (30), although whether TNF-α impairs glucose uptake into muscle through impairment in insulin signaling is less clear (11, 16).

The observation that administration of salicylates to diabetics has an insulin-sparing effect provided further evidence of a role for the immune system in diabetes (35). The molecular target of salicylates was subsequently discovered to be inhibitor κB kinase β (IκBKβ) (49), and indeed, when the corresponding gene was targeted for knockout, the mice were able to withstand diet-induced insulin resistance (50). IκBKβ is a catalytic subunit of a trimeric serine kinase that also consists of a second catalytic subunit (IκBKα) and a regulatory subunit (IκBKγ). This enzyme lies upstream of the transcription factor nuclear factor-κB (NF-κB), and together these molecules comprise the principal regulatory pathway for the immune response (5). NF-κB is typically a heterodimer that can be composed of two of a number of different subunits, including the transactivating unit p65 (5), although artificial overexpression of p65 facilitates the formation of homodimers, which show substantially enhanced activity (31). NF-κB dimers are retained in a cytoplasmic location by binding an IκB molecule. When phosphorylated by IκBK, these inhibitors detach from the complex and are targeted for proteasomal degradation, thus permitting translocation of NF-κB to the nucleus and transactivation of its target genes. These classically include cytokines, enzymes, and adhesion molecules that mediate the inflammatory process (5).

Activation of the IκBKβ-NF-κB pathway in muscle is one way that accumulation of tissue lipids may induce insulin resistance. Evidence supporting this hypothesis has come from studies of both myocyte cell culture systems (26, 42) and the liver in vivo (4, 47), but no causative link has been established between activation of the IκBKβ-NF-κB pathway in muscle and local insulin resistance. The pathway may be activated by binding of TNF-α to its cognate receptor or as a result of recognition of excess lipids by one or more of the Toll-like receptors (TLRs) (6, 39, 40). However, it is unclear whether this mechanism is significant in skeletal muscle in vivo or, indeed, whether activation of IκBKβ or nuclear translocation of NF-κB is the more significant event in mediating such an
effect. Studies of NF-κB inhibition have suggested that trans-activation of specific gene targets may be the mechanism whereby activation of the pathway influences insulin sensitivity (8, 26, 47). However, the serine phosphorylation of insulin receptor substrate (IRS)-1 by stress kinases, including IκB kinase (IκBk), has been more widely proposed as a principal cause of muscle insulin resistance (8, 27, 32, 48). Nevertheless, some recent studies have failed to show an association between impaired IRS-1 expression and insulin resistance in muscle in vivo (15, 18).

Thus in this study we aimed to determine whether local activation of the IκBk-NF-κB pathway is sufficient to cause insulin resistance in muscle and whether this is mediated principally through a direct transcriptional effect of NF-κB or via the kinase activity of IκBk. To achieve these aims, we separately overexpressed each protein in single muscles of adult rats by using in vivo electroporation (IVE) and compared the effects of each manipulation on insulin sensitivity with the contralateral control muscle 1 wk later. This approach has the advantage of minimizing the potential confounding effects of developmental or whole body physiological compensation seen in traditional germ line genetic manipulation techniques (13).

**MATERIALS AND METHODS**

**Vector construction.** The muscle-specific mammalian expression vector EH114 has been described previously (13). EH114 was converted to a Gateway® destination vector using the Gateway® vector conversion system (Invitrogen, Mount Waverley, Victoria, Australia) by insertion of the cassette into the EcoRV site. The donor vector pDONR201-BSIIMC5 was created by recombination of pDONR201/BSIIMC5 and then recombined into EH114 using LR Clonase II to make EH114-GW-IκBk. The donor vector pDONR201-BSIIMCS was a generous gift from Shane Grey (Garvan Institute). The HindIII-Xbal excised fragment was blunt-ended and ligated into EH114 to make EH114-p65. pCMV vector containing green fluorescent protein alone was shown in preliminary experiments to activate total muscle IκBk (3) but not to induce insulin resistance in muscle, which might disguise the effects of the genetic manipulation (14). At the end of each study, rats were euthanized by intravenous injection of pentobarbitone sodium (Nembutal; Abbott Laboratories, Sydney, Australia), and their muscles were rapidly dissected and freeze-clamped using liquid nitrogen-cooled tongs. Plasma glucose tracer disappearance was used to calculate whole-body glucose disposal (Rd). Endogenous glucose output (EGO) was derived from the difference between Rd and the net glucose infusion rate (GIR). The area under the tracer disappearance curve of 2-deoxy-[2-3H]glucose together with the degradations per minute of phosphorylated [3H]deoxyglucose from individual muscles was used to calculate the insulin-stimulated glucose metabolic index (Rd), an estimate of tissue glucose uptake (28).

During clamps, plasma was immediately obtained from withdrawn blood by centrifugation and glucose was determined immediately using a glucose analyzer (YSI 2300; Yellow Springs, OH). The remaining plasma was frozen in liquid nitrogen and subsequently used for plasma insulin determination by radioimmunoassay (Linco Research, St. Charles, MO). Muscle glycogen was analyzed as described previously (10). Glucose incorporation into glycogen was determined from the [3H]glucose tracer disappearance curve and counts of [14C] in muscle as previously described (28).

**Muscle lysates, SDS-PAGE, and immunoblotting.** Protein expression and phosphorylation of molecules present in muscle was assessed using SDS-PAGE and quantification of Western blots of cell lysates. Whole tissue lysates were prepared from dismembranated muscle (Mikro-dismembranator II; B. Braun Biotech, Melsungen, Germany) by manual homogenization in RIPA buffer [65 mM Tris, 150 mM NaCl, 5 mM EDTA, pH 7.4, 1% (vol/vol) Nonidet P-40 detergent, 0.5% (wt/vol) sodium deoxycholate, 0.1% (wt/vol) SDS, and 10% (vol/vol) glycerol, containing 25 μg/ml leupeptin, 10 μg/ml aprotinin, and 1% (vol/vol) phenylmethylsulfonyl fluoride] using liquid nitrogen-cooled tongs. Plasma glucose tracer disappearance was used to calculate whole-body glucose disposal (Rd). Endogenous glucose output (EGO) was derived from the difference between Rd and the net glucose infusion rate (GIR). The area under the tracer disappearance curve of 2-deoxy-[2-3H]glucose together with the degradations per minute of phosphorylated [3H]deoxyglucose from individual muscles was used to calculate the insulin-stimulated glucose metabolic index (Rd), an estimate of tissue glucose uptake (28).
2 mM sodium orthovanadate, 1 mM sodium pyrophosphate, 10 mM NaF, and 1 mM PMSF), followed by incubation for 90 min at 4°C and centrifugation for 10 min at 12,000 g. Protein content of supernatants was quantified using the Bradford method (protein assay kit, Bio-Rad Laboratories, Regents Park, NSW, Australia), and aliquots containing 10–60 μg of protein were denatured in Laemmli buffer for 5 min at 95°C or 10 min at 65°C.

Proteins were resolved by SDS-PAGE electrophoresis and electro-transferred as previously described (14). Immunoblotting using 1:500–1:1,000 dilutions of primary antibody and quantitation were also as previously described (14). pY612-IRS-1 antibody was purchased from Biosource International (Camarillo, CA), total IRS-1 from Upstate Cell Signaling Solutions (Waltham, MA), p65 from Santa Cruz Biotechnology (Santa Cruz, CA), and all other antibodies from Cell Signaling Technology (Beverly, MA).

Muscle sections and immunohistochemistry. TCMs were mounted on cork using Tissue-tek (Sakura Finetechnical, Tokyo, Japan) in a transverse orientation and were snap-frozen in liquid nitrogen-cooled isopentane after dissection. Transverse sections of formalin-fixed paraffin-embedded TCMs were cut at 4 μm, deparaffinized, and rehydrated. Tissue slides were retrieved and blocked with hydrogen peroxide followed by serum-free protein block (DAKO, Carpinteria, CA) and then incubated in primary antibody (anti NF-κB-p65 rabbit polyclonal, 1:100; Santa Cruz Biotechnology). Detection was achieved using EnVision+ (DAKO) with immunocomplexes visualized using DAB+ chromagen. Slides were examined using a Zeiss Axiosvert 200M microscope (North Ryde, NSW, Australia) under a ×20, 0.45μm Achroplan objective. Pictures were captured using a Zeiss Axiocam HR camera. The cross-sectional area of 25 randomly selected muscle fibers was measured in each of 10 fields covering test and control TCMs. The area and mean gray value (MGV) of each cell was calculated using ImageJ (http://www.uhmresearch.ca/facilities/wcif/idownload.html). Fibers in the test muscles were defined for intensity of staining using MGV and were placed in one of three groups: light (MGV > 150), medium (125 < MGV < 150), or dark staining (MGV < 125) corresponding to the level of p65 expression. A conservative estimate of fiber transfection rate was made in each test muscle by calculating the percentage of fibers with MGV less than the lowest fiber MGV value in the corresponding control muscle.

Real-time RT-PCR. Real-time RT-PCR was used to quantify relative expression of mRNAs for TLR-2 and TLR-4 and TNF-α in muscles electrotransferred with p65. Total RNA was extracted using TRI reagent (Sigma-Aldrich, Sydney, Australia), and the yield was quantified by spectrophotometry (DU-6000; Beckman Instruments, Fullerton, CA) and agarose gel electrophoresis. Contaminating genomic DNA was removed by digestion with RNase-free DNase (Promega), followed by heat/EDTA inactivation of the enzyme. DNased RNA then underwent reverse transcription for 60 min at 37°C using the Omniscript RT kit (Qiagen, Clifton Hill, Victoria, Australia) followed by heat/EDTA inactivation of the enzyme. cDNA and primer pairs were mixed with SYBR green JumpStart Taq ReadyMix (Sigma, St. Louis, MO). Samples were subjected to 35–45 cycles of 95°C denaturation for 5 s, annealing for 15 s, and 72°C extension for 20 s using a Rotorgene thermal cycler (RG3000; Corbett Research Australia, NSW, Australia). Amplification and melting curves were followed in each case to confirm that profiles were consistent with the production of the expected amplicon, and relative quantification was achieved with reference to curves of crossing point versus dilution of DNA standard with respect to each mRNA species.

Statistics. All data are means ± SE. Comparisons between treated and control muscles were made using the paired Student’s t-test or the signed rank test for non-normally distributed data. Comparisons between mean fiber cross-sectional area and degree of p65 immunostaining were made using one-way analysis of variance (ANOVA) followed by Holm-Sidak post hoc analysis. Analyses were conducted using Sigma Stat version 3.00 (SPSS, Chicago, IL) with P < 0.05 regarded as significant.

RESULTS

Overexpression of p65 subunit of NF-κB in skeletal muscle. To establish whether specific activation of the NF-κB signaling pathway in skeletal muscle is capable of causing local insulin resistance, we aimed to overexpress the transcriptionally active NF-κB p65 subunit (p65 (38)) in muscle. To this end, we used IVE to introduce a muscle-specific p65-expressing vector (EH114-p65) into the right TCM of a cohort of rats, while the contralateral TCM was electroporated with an equivalent amount of empty EH114 vector. One week after IVE, the optimum time to examine the effects of this manipulation in muscle (13), we measured p65 protein in paired muscles by Western blotting. As shown in Fig. 1A, a 64 ± 17% increase in p65 expression was achieved in test compared with paired control muscles (P < 0.001).

To verify that the p65 overexpression was of functional significance and resulted in an alteration in an established endpoint, we next considered the effects of the manipulation on muscle fiber size, since increased activation of the classic NF-κB signaling pathway has been previously associated with muscular atrophy (2, 7). The relationship between the intensity of p65 immunostaining and the cross-sectional area of muscle fibers in transverse section was examined at the 1-wk time point in a subset of rats (n = 4). Typical photomicrographs (Fig. 1, B and C) show variable levels of p65 overexpression between fibers in the test muscle and a uniform lack of detectable p65 immunostaining in the control muscle. Mean fiber transfection rate was ≥71 ± 7%. The photomicrographs and the accompanying summary graph (Fig. 1D) demonstrate that there was an inverse relationship between the level of p65 expression and fiber cross-sectional area (P < 0.001 overall). Light-, medium-, and dark-staining fibers were 89, 58, and 37% of the size of control fibers, respectively (all at least P < 0.05 vs. control). This finding implies that the degree of p65 overexpression induced resulted in fiber atrophy, consistent with that previously observed (2). Consistent with this there was a 44 ± 17% increase in MuRF-1 mRNA in test muscles (P = 0.022). MuRF-1 is an E3 ligase shown to be an NF-κB target gene and to mediate muscle atrophy (7). Thus we were
able to successfully overexpress p65 in TCMs to an extent that resulted in measurable downstream effects.

p65 overexpression does not impair muscle glucose disposal. To assess whether activation of NF-κB has an impact on insulin sensitivity and glucose disposal in muscle, we measured uptake of radiolabeled glucose and 2-deoxy-D-[2,6-3H]glucose tracer into p65-overexpressing and control muscles under hyperinsulinemic-euglycemic clamp conditions 1 wk after IVE. Rats weighed 234 ± 5g at the time of study and had plasma glucose and insulin concentrations of 7.2 ± 0.3 mM and 81 ± 3 mU/l, respectively, during the clamp. Clamp GIR, Rd, and EGO values for these animals were 41.7 ± 3.3, 38.9 ± 2.8, and 2.8 ± 2.6 mg·kg^{-1}·min^{-1}, respectively. There were no differences between paired muscles in Rg or glycogen synthesis measured by incorporation of tracer into glycogen during the clamp (Table 1). Furthermore, glycogen content of

Table 1. Effects of p65 and IκBKβ overexpression on physiological parameters during hyperinsulinemic-euglycemic clamp

<table>
<thead>
<tr>
<th>Variable</th>
<th>p65 Overexpression</th>
<th>IκBKβ Overexpression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test</td>
<td>Control</td>
</tr>
<tr>
<td>Glucose disposal into TCM, mg·kg^{-1}·min^{-1}</td>
<td>29.7±3.7</td>
<td>29±3.2</td>
</tr>
<tr>
<td>Glucose incorporation into TCM glycogen, mg·kg^{-1}·min^{-1}</td>
<td>10.5±1.7</td>
<td>10.3±1.4</td>
</tr>
<tr>
<td>Stored TCM glycogen, nmol/mg</td>
<td>51±3</td>
<td>50±2</td>
</tr>
</tbody>
</table>

Data are means ± SE for test vs. control muscle groups and demonstrate no effect of either IκBKβ or p65 overexpression in tibialis cranialis muscle (TCM) for 1 wk on glucose disposal or glycogen accumulation.
muscles, reflecting glucose disposal and glycogen usage over a longer period of time, was also unaffected by the manipulation (Table 1).

To further establish whether muscle insulin sensitivity was altered by p65 overexpression, we measured activating phosphorylation (15) and protein expression of key phosphatidylinositol 3-kinase (PI3-kinase) pathway signaling intermediates by Western blotting in lysates derived from test and control muscles removed at the end of the clamp procedure. As shown in Fig. 2, A and B, expression of IRS-1 and Akt was unaltered, as was Ser473 phosphorylation of Akt, whereas Tyr612 phosphorylation of IRS-1, which facilitates binding of the p85 subunit and thus PI3-kinase and Akt activation, was in fact increased by 28 ± 8% (P = 0.011). Thus analysis of glucose disposal and activation of the insulin signaling cascade together provide no evidence that local NF-κB activation is deleterious for muscle insulin sensitivity.

p65 overexpression in muscle has specific negative feedback effects on the classic NF-κB pathway. We were also interested in what effect overexpression of p65 might have on upstream regulators of activation of the classic NF-κB activation pathway, since this has not been established in skeletal muscle. To this end, we measured mRNA expression of TLR-2 and TLR-4, both of which have been suggested to play a role in translocation to the nucleus and transactivation of target genes (5). IkBα expression was unaffected by this manipulation, suggesting that there was no compensatory down-regulation of this catalytic subunit, and p65 protein expression was also unchanged (data not shown). Thus we were able to successfully and specifically overexpress IkBα in rat muscle and demonstrate an appropriate downstream effect of this manipulation.

IkBα overexpression does not impair muscle glucose disposal. In rats electroporated with IkBα, we compared glucose disposal and glycogen storage in test and control muscles under hyperinsulinemic-euglycemic clamp conditions. Clamps in this experiment were preceded by an additional 1-h moderate infusion of Intralipid sufficient to activate IkBβ in the muscle but not to induce insulin resistance when continued for a maximum of 3.25 h (3). Rats weighed 234 ± 4g at the time...
of study and had plasma glucose and insulin concentrations of 8.5 ± 0.2 mM and 301 ± 31 mU/l, respectively, during the clamp. Clamp GIR, Rd, and EGO values for these animals were 28.0 ± 1.2, 33.3 ± 1.8, and 5.4 ± 1.6 mg·kg⁻¹·min⁻¹, respectively. Similarly to results obtained with p65 overexpression, there was no significant difference in Rg between paired muscles (Table 1), although there was a small, nonsignificant reduction in incorporation of glucose into glycogen during the clamp (P = 0.056; Table 1). However, this effect was not mirrored by muscle glycogen content, since values in test and control muscles were identical (Table 1). Although it is not appropriate to statistically compare glucose turnover between cohorts of animals used for p65 and IκB overexpression, because these studies were not carried out simultaneously, the differences in glucose and insulin concentrations measured during the clamps may be due, at least in part, to differences in basal concentrations between cohorts (24 ± 2 vs. 12 ± 1 mU/l plasma insulin and 4.7 ± 0.1 vs. 4.3 ± 0.1 mM blood glucose for IκB and p65 rats, respectively).

Fig. 3. p65 overexpression has negative feedback effects on the classic NF-κB signaling pathway. Graphs show the effects of p65 overexpression in muscle on Toll-like receptor (TLR)-2 (A) and TLR-4 mRNA expression (B) as measured using real-time PCR and corrected for 36B4 mRNA. A specific reduction of 36 ± 9% in TLR-2 mRNA resulted. A summary graph and blot (C) demonstrate a 49 ± 17% increase in IκB protein expression in test vs. control muscles. *P < 0.05 vs. control.

Fig. 4. IκB overexpression in muscle. Summary graphs and representative Western blots confirm successful overexpression of IκB in TCM: IκB protein was increased by 655 ± 54% (A) and total serine-phosphorylated IκB (pS-IκBα/β) was increased by 470 ± 97% (B) in test muscles, resulting in a 12 ± 5% reduction in IκB expression (C), implying activation of NF-κB. *P < 0.05; ***P < 0.001 vs. control.
IkβKβ overexpression increases phosphorylation of insulin signaling intermediates in muscle. To further investigate whether increased activation of IkβKβ would result in reduced insulin sensitivity, we measured expression and phosphorylation of signaling intermediates in the PI3-kinase cascade in muscles removed from rats at the end of the clamp procedure. We found increases in Tyr^{612} phosphorylation of IRS-1 (24 ± 11%, P = 0.023; Fig. 5A), Ser^{473} phosphorylation of Akt (23 ± 3%, P < 0.001; Fig. 5B), and Ser^{9} phosphorylation of glycogen synthase kinase-3β (12 ± 4%, P = 0.007; Fig. 5C) as determined by Western blotting in the absence of any effect on total protein levels of IRS-1 or Akt. This consistent set of data implies a moderate increase in flux through the insulin signaling pathway in IkβKβ-overexpressing muscles that was perhaps insufficient to be reflected in changes in glucose disposal but is in marked contrast to the predicted effect of activation of this kinase to impair signaling via serine phosphorylation of IRS-1. Furthermore, neither activating phosphorylation nor protein expression of p70S6 kinase, e-Jun terminal kinase (JNK), or p38 mitogen-activated protein kinase (MAPK) were significantly altered by IkβKβ overexpression (Fig. 5D), confirming that there was no compensatory increase in activity of alternative serine kinases.

DISCUSSION

In the studies described presently, we aimed to determine whether increased activity of the IkβKβ-NF-κB pathway is sufficient to cause insulin resistance in muscle and to determine which component of the pathway might be more important in this role. To this end, we separately overexpressed IkβKβ and the p65 subunit of NF-κB in single muscles of normal adult

Fig. 5. IkβKβ overexpression in muscle does not impair signaling through the phosphatidylinositol 3-kinase (PI3-kinase) cascade. Summary graphs and representative blots show that overexpression of IkβKβ results in increases in phosphorylation of signaling intermediates IRS-1 (pY^{612}; A), Akt (pS^{473}; B), and glycogen synthase kinase (GSK)-3β (pS^{9}; C), implying increased flux through the PI3-kinase cascade. However, there was no compensatory change in expression or phosphorylation of alternative serine kinases (p38 MAPK, JNK, or p70S6 kinase; D). *P < 0.05; **P < 0.01; ***P < 0.001 vs. control.
rats for 1 wk using IVE, and we compared the effects on insulin sensitivity with those in paired control muscles. Despite these manipulations resulting in increased degradation of IκBα and muscle fiber atrophy, respectively, consistent with increased activity of each of these molecules (7), we found no change in acute glucose disposal or glycogen storage as a result. This lack of effect occurred despite a similar degree of overexpression of target genes to that previously achieved using this method with other signaling molecules that did result in increased glucose disposal into muscle (13, 15, 29). In fact, we found evidence for a moderate increase in flux through the PI3-kinase/insulin signaling cascade, especially following using this method with other signaling molecules that did result overexpression of target genes to that previously achieved result. This lack of effect occurred despite a similar degree of change in acute glucose disposal or glycogen storage as a result. This lack of effect occurred despite a similar degree of change in acute glucose disposal or glycogen storage as a result.

Metabolism and innate immunity are two of the most evolutionarily conserved systems in the animal kingdom. Indeed, the anatomical basis and molecular underpinning of each are based on common ancestral features (23). However, the molecular basis for the recently recognized relationship between inflammation and insulin sensitivity of tissues is not well characterized. In particular, it is unclear whether activation of inflammatory signaling pathways is of relevance only within cells of a specific immune lineage or, additionally, within cells traditionally thought of as insulin sensitive, including myofibers. In the studies described presently, we introduced cDNA constructs under the control of skeletal muscle-specific promoters by IVE. This has permitted us to examine the significance of activation of the IκBκB-NF-κB pathway specifically in skeletal myocytes in the absence of the confounding factors of developmental compensation or whole body physiological adaptation to germ line manipulation (13).

In finding no effect of IκBκB activation on insulin-stimulated glucose disposal into muscle, our results corroborate those obtained by Cai et al. (7), who saw no effect of transgenic overexpression of IκBκB on whole body glucose tolerance or ex vivo uptake of glucose into extensor digitorum longus muscles, despite a marked atrophic effect. Furthermore, Rohll et al. (36) showed that a muscle-specific deletion of IκBκB did not prevent obesity-induced insulin resistance in mice. These chronic studies, together with the relatively acute manipulations described presently, suggest that the earlier in vitro findings (26, 42) are of limited physiological relevance. Thus the effects on muscle insulin sensitivity of pharmacological intervention or knockout of IκBκB (47) or its downstream targets such as inducible nitric oxide synthase (9, 33) seem to result from a primary effect in another cell type, and both liver (1, 8) and myeloid cells (1, 22) have been implicated in mouse studies. A rationale for the link among increased plasma fatty acids, systemic subclinical inflammation, and muscle insulin resistance might therefore be as follows: binding of lipid derivatives by TLRs on macrophage membranes results in activation of the intracellular IκBκB-NF-κB pathway and release of cytokines such as TNF-α, which cause NF-κB-independent signaling impairments in muscle, such as reduced AMP kinase activity (46) and thus attenuated glucose disposal. In support of this, recent studies by Hevener et al. (22) have shown that macrophage infiltration of rodent muscle is increased by high fat feeding and that peroxisome proliferator-activated receptor-γ expression in macrophages is necessary to suppress the activation of the IκBκB-NF-κB pathway and preserve muscle insulin sensitivity.

One of the proposed mechanisms whereby increased IκBκB activity might cause insulin resistance is through Ser537 phosphorylation of IRS-1, resulting in reduced tyrosine phosphorylation of this molecule and hence impaired recruitment of PI3-kinase (34). However, we found evidence for moderately increased flux through the insulin signaling pathway in muscles electroporated with IκBκB especially. Although it may be that the magnitude of the effect may not have been sufficient to be reflected in an enhancement in insulin-stimulated muscle glucose disposal, previous work has also demonstrated that the effects of altering IRS-1 abundance or activation on glucose disposal may not be clear cut (15, 18). These findings do not rule out the possibility that activation of alternative stress kinases including novel protein kinases C, p70S6 kinase, and JNK (27, 32, 48) may have a local impact on muscle insulin sensitivity.

We also found evidence that p65 overexpression results in negative feedback effects on activation of NF-κB that have not been documented in muscle to date. Specifically, TLR-2 but not TLR-4 expression was downregulated, implying a reduction in sensitivity of myofibers to activators related chemically to peptidoglycans rather than lipopolysaccharide (6). Recent data suggest a key role for TLR-2 in mediating palmitate-induced insulin resistance in myotubes (39); hence, this may imply the existence of a protective mechanism in muscle against excessive activation of NF-κB target genes. Furthermore, upregulation of IκBα under the same circumstances would tend to sequestrate NF-κB in the cytoplasm and also limit the inflammatory response. These findings are in marked contrast to the feed-forward activation of the IκBκB-NF-κB pathway normally expected in myeloid cells as part of the innate immune response (5). However, recent publications have identified mechanisms for negative feedback regulation of NF-κB in endothelial cells (20) and macrophages (19) that confirm the feasibility of this hypothesis for muscle.

In conclusion, our data do not provide evidence for a role of activation of the IκBκB-NF-κB pathway in muscle in the initiation of insulin resistance in muscle in vivo. Instead, activation of this pathway in adipose or hepatic macrophages may be more important in generating muscle insulin resistance via secondary means.

ACKNOWLEDGMENTS

We are indebted to Drs. Steven Shoelson (Joslin Diabetes Center, Harvard Medical School) and Shane Grey (Inflammation and Immunity Program, Garvan Institute) for provision of DNA constructs, to Tracie Reinten, Jonathan Davey, and Mercedes Ballesteros for expert technical assistance, and to the staff of the Biological Testing Facility at the Garvan Institute for animal care.

GRANTS

We acknowledge funding from the National Health and Medical Research Council of Australia and the Diabetes Australia Research Trust for this work.

REFERENCES


NF-κB AND MUSCLE INSULIN SENSITIVITY


