A central role for hepatocyte growth factor in adipose tissue angiogenesis

Lauren N. Bell, Liying Cai, Brian H. Johnstone, Dmitry O. Traktuev, Keith L. March, and Robert V. Considine

Department of Cellular and Integrative Physiology, Indiana Center for Vascular Biology and Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana

Submitted 1 May 2007; accepted in final form 6 December 2007

Bell LN, Cai L, Johnstone BH, Traktuev DO, March KL, Considine RV. A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am J Physiol Endocrinol Metab 294: E336–E344, 2008. First published December 11, 2007; doi:10.1152/ajpendo.00272.2007.—Hepatocyte growth factor (HGF) is a potent mitogenic and angiogenic factor produced in human adipose tissue. In this study, we use 3T3-F442A preadipocytes to study the contribution of HGF to angiogenesis in an in vivo fat pad development model. As observed for human adipocytes, HGF is synthesized and secreted by 3T3-F442A preadipocytes and mature adipocytes. HGF knockdown with small-interfering RNA reduced HGF mRNA expression 82.3 ± 4.2% and protein secretion 82.9 ± 1.4% from 3T3-F442A preadipocytes. Silencing of HGF resulted in a 70.5 ± 19.0% reduction in endothelial progenitor cell migration to 3T3-F442A-conditioned medium in vitro. 3T3-F442A preadipocytes injected under the skin of mice form a fat pad containing mature, lipid-filled adipocytes and a functional vasculature. At 72 h postinjection, expression of the endothelial cell genes TIE-1 and platelet endothelial cell adhesion molecule (PECAM)-1 was decreased 94.4 ± 2.2 and 91.5 ± 2.5%, respectively, in 3T3-F442A fat pads with HGF silencing. Knockdown of HGF had no effect on differentiation of 3T3-F442A preadipocytes to mature adipocytes in vitro or in vivo. In developing fat pads under the skin of HGF overexpressing transgenic mice, TIE-1 and PECAM-1 mRNA was increased 16.5- and 21.4-fold, respectively, at 72 h postinjection. The increase in gene expression correlated with immunohistochemical evidence of endothelial cell migration in the developing fat pad. These data suggest that HGF has a central role in regulating angiogenesis in adipose tissue.

ADIPOSE TISSUE HAS the potential for extensive growth and expansion throughout the lifetime of an individual, a property that is dependent on the plasticity of the vasculature within this tissue. An extensive capillary network is present in adipose tissue that supports adipocyte metabolism (4, 10) and allows this highly vascularized tissue to actively secrete many hormones, cytokines, and angiogenic growth factors (19). Early studies suggest that angiogenesis and adipogenesis are tightly coupled in prenatal development of adipose tissue (9) and that angiogenesis may precede adipogenesis (4). Interestingly, several recent studies have shown that inhibition of angiogenesis is effective in regulating adipose tissue mass, either by preventing weight gain or inducing weight loss in diet-induced and genetic mouse models of obesity (2, 13, 20).

Recent work from our laboratory has focused on the contribution of hepatocyte growth factor (HGF) to angiogenesis in adipose tissue. HGF is a pleiotropic factor with potent angiogenic and mitogenic effects (15). We have reported that HGF is produced in human adipose tissue (17, 18), that serum HGF is elevated more than threefold in obese individuals (17), and that adipocytes from obese subjects secrete significantly more HGF than adipocytes from lean individuals in vitro (1). Although we have established that HGF is synthesized in adipose tissue, and it is known that angiogenesis is required for expansion of adipose tissue, the role of HGF in adipose tissue angiogenesis has not been investigated.

In this study, we examine the contribution of HGF to adipose tissue angiogenesis using the 3T3-F442A in vivo fat pad formation model originally developed by Green and Kehinde (8). In this model, 3T3-F442A preadipocytes injected under the skin of BALB/c athymic nude mice differentiate into mature, lipid-filled adipocytes and form fully functional fat pads. More recently, this model has been adapted to the study of the mechanisms through which fat pad neovascularization occurs (7, 16). In particular, Neels et al. (16) have demonstrated that angiogenesis in developing 3T3-F442A fat pads can be quantitated by measuring endothelial cell mRNA content, which correlates with histological evidence of vessel formation. In the current study, HGF gene expression was silenced in 3T3-F442A preadipocytes before injection under the skin of nude mice, and the response to loss of HGF function on fat pad angiogenesis and preadipocyte differentiation was assessed. The effect of elevated HGF to enhance fat pad neovascularization and 3T3-F442A differentiation was also tested in transgenic mice that overexpress HGF. We show that silencing of HGF decreases the ability of 3T3-F442A preadipocytes to stimulate endothelial progenitor cell (EPC) migration in vitro and to promote recruitment of endothelial cells for angiogenesis in developing fat pads in vivo. On the other hand, elevated HGF enhances endothelial cell migration into fat pads. Taken together, the findings of these studies highlight a central role for HGF in regulating angiogenesis in developing adipose tissue.

MATERIALS AND METHODS

Animals. Male BALB/c (6–8 wk old) athymic nude mice were purchased from Charles River Laboratories (Wilmington, MA). Transgenic mice overexpressing HGF under the control of the metallothionein I promoter on the C57Bl/6J background (23) were originally obtained from Dr. Glenn Merlino [National Institutes of Health, (NIH) Bethesda, MD] and maintained as a breeding colony at Indiana University. All animal housing and protocols were approved by the Indiana University School of Medicine Institutional Animal Care and Use Committee.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Cell culture and injection in vivo. 3T3-F442A preadipocytes were obtained from Dr. Howard Green (Harvard University, Cambridge, MA) and maintained in DMEM + 10% bovine calf serum (BCS). 3T3-F442A preadipocytes were differentiated to mature adipocytes in vitro using DMEM + 10% FBS with 10 μg/ml insulin (Sigma-Aldrich, St. Louis, MO) for 10 days. To assess the effect of HGF on differentiation in vitro, preadipocytes were differentiated in medium containing 10% FBS, 10 μg/ml insulin, and 100 ng/ml HGF (R&D Systems, Minneapolis, MN). To initiate fat pad formation in vivo, 1.5 x 10^7 undifferentiated 3T3-F442A preadipocytes in 0.05 ml DMEM + 10% BCS were injected just under the skin on the back of mice. 3T3-F442A preadipocytes were labeled before injection in mice with Qtracker 800 Qdot nanocrystals (Molecular Probes, Eugene, OR), and injected cells were subsequently identified using the LI-COR Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE) for excision from the mouse. 3T3-F442A-derived and epididymal fat pads were removed at 72 h after injection. Developing fat pads were removed from the mice attached to the underside of the skin. Fat pads were preserved in 4% formaldehyde, followed by paraffin embedding, and then cut into thin sections (5 μm). Deparaffinized sections were treated with citrate retrieval buffer (90°C, 20 min) and incubated with 2% H2O2 to block endogenous peroxide for 10 min. Sections were incubated with rabbit anti-CD31 IgGs (Lab Vision, Fremont, CA) for 1 h followed by incubation with anti-Rabbit IgGs (Vector Labs, Burlingame, CA). Antigen-antibody complexes were developed by incubating sections with VECTASTAIN ABC Reagent (horseradish peroxidase) and detected by accumulation of diaminobenzidine substrate (Sigma-Aldrich). The sections were counterstained with hematoxylin to visualize cell nuclei.

RNA isolation and real-time RT-PCR. Total RNA was isolated from cells and tissues by guanidinium thiocyanate-phenol-chloroform extraction, and cDNA was synthesized from 0.5 μg of total RNA using random hexamers (Applied Biosystems, Foster City, CA) in a 100-μl reaction. mRNA levels of all genes investigated were determined by Real-Time RT-PCR using iTaq SYBR Green Supermix with ROX (Bio-Rad Laboratories, Hercules, CA) shown in Table 1 were used at a concentration of 200 nM. Expression of all genes was normalized to 36B4 (Invitrogen, Carlsbad, CA) by 10.220.33.3 on April 19, 2017 http://ajpendo.physiology.org/ Downloaded from

In vitro EPC Transwell migration assays. 3T3-F442A preadipocytes with and without HGF silencing were cultured in DMEM + 1% BCS for 72 h, and conditioned culture medium was collected and stored at −80°C. For the migration assays, highly proliferative late-outgrowth EPC clones were isolated from human umbilical cord blood as previously described (11). Migration of EPCs to 3T3-F442A preadipocyte conditioned medium with and without HGF silencing was assessed as previously described with minor modifications (11). Briefly, bottom surfaces of Transwell insert membranes, with a pore diameter of 8 μm, were coated with rat collagen type I to enhance adhesion. EPCs (3 x 10^4) were added to each insert, and inserts were placed in a 24-well plate with the lower wells containing undiluted nonconditioned control, conditioned siCONTROL, or conditioned siHGF medium (3 inserts/well per treatment). After allowing cells to migrate for 4 h, the lower aspect of the inserts was stained with Diff-Quick (Dade Behring, Deerfield, IL) to visualize the cells that had migrated through the membrane. Cells retained on the top surface of the insert membranes were eliminated using a cotton-tipped applicator. Three separate fields across the bottom of the insert, covering ~80% of the available surface, were photographed using a ×40 objective. The number of migratory cells in each field was quantitated using Image J (NIH). The number of migratory cells was averaged across the three fields and then across the three wells to derive the number of migratory cells per treatment in a given experiment. Migration in the absence of medium conditioning (undiluted control medium) was determined in each experiment and subtracted from the conditioned medium values. On average, 525 ± 42 cells migrated across the membrane in the absence of medium conditioning for the six experiments performed.

Table 1. Primer sequences used for real-time RT-PCR assays

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Forward (5'→3')</th>
<th>Reverse (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF</td>
<td>TGCTTCTGGTGGCTGCTGCTGTCT</td>
<td>AGATGCTGACGGAGGAGGAG</td>
</tr>
<tr>
<td>LpL</td>
<td>TTCTGCTGCTTATCGCTCCTCCT</td>
<td>TGCTCTGGCTGCGGTGGTAGG</td>
</tr>
<tr>
<td>TIE-1</td>
<td>GCCGTTTTTGAAGCTGTGT</td>
<td>CTGCTACGGCGATGAGTG</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>CTGCTGAGCTCCTCCTGAT</td>
<td>CACGAGACCTCGCCCAT</td>
</tr>
<tr>
<td>PPARγ</td>
<td>GCAGAGCAGGCCGGTCCTGCTGCTGCT</td>
<td>GCCATGCGCTTACGCGAGGAG</td>
</tr>
<tr>
<td>C/EBPβ</td>
<td>AACAGGCCGACGCAGAGGAT</td>
<td>CGGCGAGGGTCGAAGT</td>
</tr>
<tr>
<td>36B4</td>
<td>AGGGCCGCTTGGACGAGGAG</td>
<td>CGGCGAGGGTCGAAGT</td>
</tr>
</tbody>
</table>

HGF, hepatocyte growth factor; LpL, lipoprotein lipase; PECAM, platelet endothelial cell adhesion molecule; PPAR, peroxisome proliferator-activated receptor.
HGF and vascular endothelial growth factor secretion assays. HGF release in the culture medium was measured using a mouse-specific HGF enzyme-linked immunosorbent assay (ELISA; Institute of Immunology, Tokyo, Japan). Vascular endothelial growth factor (VEGF) release in the culture medium was also measured by ELISA (R & D Systems). Secretion was normalized to either total DNA content of cells quantitated by Hoechst 33258 fluorometry (3), or total protein concentration of cells determined with the DC Bio-Rad Protein Assay (Bio-Rad Laboratories).

Statistical analyses. All data are expressed as means ± SE. Statistical comparisons of all in vitro experiments were done by paired t-test. Comparison of gene expression in fat pads with and without HGF silencing and from HGF-overexpressing mice and wild-type littermates was done by unpaired t-test. A P value of <0.05 was considered significant. All statistics were done using GraphPad Prism software.

RESULTS

3T3-F442A preadipocytes express HGF mRNA and secrete HGF protein. To determine if 3T3-F442A adipocytes secrete HGF as we previously observed for human adipocytes, HGF mRNA and protein secretion were quantitated. Both 3T3-F442A preadipocytes and mature adipocytes express HGF, and differentiation does not alter mRNA levels (78.4 ± 10.8 vs. 62.1 ± 6.1 relative units; n = 3). A significant increase in lipoprotein lipase (LpL) mRNA after 10 days of differentiation in vitro confirmed that the cells had matured to adipocytes (10.3 ± 2.0 vs. 1,866.0 ± 132.0 relative units; P = 0.005; n = 3). Interestingly, despite similar levels of HGF mRNA expression in undifferentiated and fully differentiated cells, secretion of HGF protein was significantly greater from preadipocytes compared with mature cells (Fig. 1). Adipose tissue secretes a number of angiogenic growth factors in addition to HGF, including VEGF. As shown in Fig. 1, 3T3-F442A preadipocytes secreted 15.5 ± 0.2-fold more HGF than VEGF in the culture medium over a 48-h period. Differentiation increased VEGF secretion 4.4 ± 1.1-fold over that of preadipocytes, and 3T3-F442A adipocytes secreted more VEGF than HGF (P = 0.02). These data demonstrate that 3T3-F442A preadipocytes and adipocytes synthesize and secrete HGF.

Expression and secretion of HGF is reduced by siRNA in 3T3-F442A preadipocytes. To examine the role of HGF in fat pad neovascularization and adipocyte differentiation in vivo, siRNA constructs were used to silence HGF expression in 3T3-F442A preadipocytes. Electroporation with 400 nM siRNA resulted in a significant 82.3 ± 4.2% decrease in HGF mRNA levels (Fig. 2A), which translated to a significant 82.9 ± 1.4% decrease in HGF secretion from 3T3-F442A preadipocytes compared with control cells that had been electroporated with a scrambled sequence (Fig. 2B). The effect of HGF knockdown on 3T3-F442A differentiation to mature adipocytes was tested in vitro. Following 10 days of differentiation, expression of the adipocyte-specific genes CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor (PPAR)-γ, and LpL was significantly increased in differentiated adipocytes compared with that in undifferentiated cells, indicating successful differentiation to mature adipocytes. Silencing of HGF had no effect on differentiation of preadipocytes to mature adipocytes in vitro (Fig. 3).

Migration of EPCs to medium conditioned by preadipocytes is attenuated with HGF silencing. To assess the functional significance of HGF knockdown in 3T3-F442A preadipocytes with respect to the induction of angiogenesis, the in vitro migratory response of EPCs to medium conditioned by 3T3-F442A preadipocytes was examined. EPC migration was increased significantly by 155.5 ± 3.8% when cells were exposed to medium conditioned by 3T3-F442A preadipocytes compared with migration stimulated by control medium not conditioned by preadipocytes. As shown in Fig. 4, EPC migration to conditioned medium from 3T3-F442A preadipocytes with HGF knockdown was decreased significantly by 70.5 ± 19.0%. These data demonstrate that inhibition of HGF secretion from 3T3-F442A preadipocytes results in a significant reduction in the ability of the preadipocytes to recruit cells required for vascular formation.

3T3-F442A cells develop into vascularized fat pads in vivo. Injection of 3T3-F442A preadipocytes under the skin of BALB/c nude mice results in formation of a fat pad retained within a pocket formed by the connective tissue fascia separating the skin and underlying muscle tissue (16), permitting clean retrieval of the developing fat pad from the mouse. Labeling of preadipocytes with Q-tracker 800 Qdot nanocrystals before injection confirmed that the injected cells were retained within this connective tissue pocket (data not shown).

Developing fat pads were removed at several time points following injection of 3T3-F442A preadipocytes, and expression of endothelial cell genes and markers of adipocyte differentiation were examined. As shown in Table 2, expression of the endothelial cell markers TIE-1 and platelet endothelial cell adhesion molecule (PECAM-1) was not detectable in undifferentiated 3T3-F442A preadipocytes cultured in vitro. TIE-1 and PECAM-1 expression was measurable within the developing fat pad as soon as 24 h after injection of 3T3-F442A preadipocytes, and expression increased to levels comparable to that in epididymal fat by day 6 following injection. LpL mRNA was low in developing fat pads at 24 h following injection and increased over the course of the experiment, indicating that 3T3-F442A cells were differentiating to mature adipocytes in vivo (Table 2). These data demonstrate that injected 3T3-F442A cells form fat pads in vivo and that endothelial cell migration and adipocyte differentiation can be monitored by quantitation of cell-specific mRNA.
Loss of HGF activity in developing fat pads results in impaired neovascularization in vivo. The effect on endothelial cell recruitment of silencing HGF mRNA expression in 3T3-F442A preadipocytes before injection under the skin of nude mice was assessed at 72 h postinjection. As shown in Fig. 5, HGF mRNA remained reduced significantly by 73.9 ± 12.0% at the end of 72 h of in vivo fat pad development. Decreased endothelial cell recruitment was evidenced by a significant 94.4 ± 2.2% reduction in TIE-1 mRNA and a 91.5 ± 2.5% decrease in PECAM-1 mRNA in the developing fat pad (Fig. 5).

We performed immunohistochemical staining for PECAM-1 (CD31) in fat pads removed 72 h after injection to assess the location and organization of endothelial cells in developing fat pads. As shown in Fig. 6, A and B, endothelial cells are not detectable in the injected cell mass at 72 h postinjection. However, staining for PECAM-1 along the edge of the muscle layer adjacent to the fat pad developing from siCONTROL preadipocytes (Fig. 6A) is greater than that next to siHGF-

![Image](http://ajpendo.physiology.org/Downloaded_from_http://ajpendo.physiology.org)
injected preadipocytes (Fig. 6B). These data suggest that endothelial cell gene expression in developing fat pads at 72 h is the result of endothelial cells that are just entering the developing fat pad and have not yet formed vascular structures.

The effects of reduced neovascularization on 3T3-F442A preadipocyte differentiation were also explored (Table 3). Expression of the adipocyte-specific genes C/EBPα, PPARγ, and LpL was increased significantly at 72 h postinjection compared with that in preadipocytes before injection (see Fig. 3 for reference). However, there was no significant difference in expression of adipocyte differentiation markers between developing fat pads with and without HGF silencing 72 h following injection. These results demonstrate that lack of HGF decreases endothelial cell migration in developing fat pads and suggest that attenuated neovascularization of the fat pad did not impair early events in 3T3-F442A preadipocyte differentiation.

Elevated HGF results in accelerated neovascularization and increased early differentiation of fat pads in vivo. To examine if elevated HGF expression could accelerate fat pad neovascularization in vivo, 3T3-F442A preadipocytes were injected under the skin of HGF-overexpressing mice and wild-type littermates. At 72 h postinjection, expression of TIE-1 was increased significantly by 16.5-fold, and PECAM-1 by 21.4-fold, in fat pads from HGF-overexpressing mice compared with wild-type littermates (Fig. 7). The significant elevation in these endothelial cell markers was maintained to 144 h postinjection.

Table 2. Gene expression in undifferentiated 3T3-F442A preadipocytes grown in culture and in developing fat pads in vivo

<table>
<thead>
<tr>
<th></th>
<th>Undifferentiated 3T3-F442A</th>
<th>24 h</th>
<th>4 day</th>
<th>6 day</th>
<th>Epididymal Adipose Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIE-1</td>
<td>Undet</td>
<td>0.5</td>
<td>12</td>
<td>32</td>
<td>25 ±11</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>Undet</td>
<td>11</td>
<td>44</td>
<td>183</td>
<td>184 ±48</td>
</tr>
<tr>
<td>LpL</td>
<td>10</td>
<td>63</td>
<td>46</td>
<td>1017</td>
<td>2309 ±937</td>
</tr>
</tbody>
</table>

Relative mRNA expression normalized to 36B4; n = 1 experiment for each time point and n = 4 for epididymal adipose tissue.

Immunohistochemical staining for PECAM-1 (CD31) in fat pads removed 72 h after injection under the skin of HGF-overexpressing mice is shown in Fig. 8. At 72 h postinjection, there was a larger band of injected cells, and more extensive PECAM-1 staining, in the fat pad from the HGF-overexpressing mouse (Fig. 8B) compared with that in the fat pad from the wild-type mouse (Fig. 8A). Interestingly, at 72 h postinjection, endothelial cells in both wild-type and HGF-overexpressing mice appear to be organizing into vessel-like structures to a much greater extent than observed at 72 h in nude mice (Fig. 6). This could be because of the presence of mature adipose tissue under the skin of C57BL/6J mice secreting angiogenic factors that facilitate vessel development in the injected cell mass. In contrast, in nude mice, the injected cells rest directly on the muscle layer (Fig. 6) and are therefore exposed to a different in vivo milieu. Overall, these data suggest that endothelial cell gene expression detected in developing fat pads in HGF-overexpressing and wild-type mice is derived from endothelial cells that have sprouted from existing blood vessels and have migrated into the injected cell mass.

DISCUSSION

It was first shown by Green and Kehinde (8) that fat pads develop from 3T3-F442A preadipocytes injected under the skin of BALB/c nude mice. This model has subsequently been...
used to study control of leptin synthesis in vivo (14) and
investigate the relationship between angiogenesis and adipo-
genesis during fat pad development (7, 16). Our work now
extends the use of this model to study the role of HGF in the
early angiogenic response in adipose tissue. We show that
silencing of HGF mRNA expression in 3T3-F442A preadipo-
cytes reduced the ability of the cells to secrete HGF protein and
to stimulate EPC migration in vitro. Injection of preadipocytes
with HGF knockdown under the skin of nude mice signifi-
cantly impaired recruitment of endothelial cells into the devel-
oping fat pad. In contrast, elevated HGF in transgenic mice
accelerated endothelial cell migration into developing fat pads.
Collectively, these findings support a central regulatory role for
HGF in adipose tissue angiogenesis.

As we have observed for human preadipocytes and adipo-
cytes (1, 17, 18), 3T3-F442A cells express HGF mRNA and
secrete HGF protein. HGF mRNA levels do not differ between
3T3-F442A preadipocytes and mature adipocytes differenti-
ated in vitro, but preadipocytes secrete significantly more HGF
protein than mature adipocytes. This finding suggests that HGF
protein synthesis is regulated differentially at the translational
level or that the packaging of the hormone for secretion differs
between the two cell states. Of importance in vivo, this finding
may suggest that preadipocytes, rather than adipocytes, are
primarily responsible for regulating the formation of capillaries
to support adipose tissue growth.

Secretion of HGF from 3T3-F442A preadipocytes is signif-
icantly greater than that of VEGF in vitro. This observation is
in agreement with earlier studies from our laboratory and
others showing that synthesis of HGF in human adipose tissue
is ~10-fold greater than that of VEGF or basic fibroblast
growth factor (6, 18). In contrast, differentiated 3T3-F442A
cells appear to secrete more VEGF than HGF, a finding that is

<table>
<thead>
<tr>
<th>mRNA Level (relative units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>siControl</td>
</tr>
<tr>
<td>C/EBPα</td>
</tr>
<tr>
<td>PPARγ</td>
</tr>
<tr>
<td>LpL</td>
</tr>
<tr>
<td>siHGF</td>
</tr>
<tr>
<td>C/EBPα</td>
</tr>
<tr>
<td>PPARγ</td>
</tr>
<tr>
<td>LpL</td>
</tr>
</tbody>
</table>

Values are means ± SE for 4 experiments. si, Small interfering. Relative mRNA expression normalized to 36B4.

Table 3. Impaired neovascularization does not alter 3T3-F442A differentiation in vivo

Fig. 6. Immunohistochemical evaluation of vascular development in fat pads formed by 3T3-F442A cells with HGF knockdown. Fat pads attached to the
underside of the skin from nude mice were stained with antibodies to the endothelial cell marker PECAM-1 (CD31). Endothelial cells were not present in the
center of the injected control preadipocytes (A), or those with HGF knockdown (B), at 72 h. There was greater staining for endothelial cells in the muscle layer
adjacent to the control 3T3-F442A preadipocytes (siCONTROL; A) compared with that in the muscle layer adjacent to injected cells with HGF knockdown
(siHGF; B). Black arrows indicate endothelial cells. Inj Cells, injected cells; M, muscle.

Fig. 7. Overexpression of HGF increases endothelial cell gene expression in
developing fat pads in vivo. 3T3-F442A preadipocytes were injected under the
skin of transgenic mice overexpressing HGF (HGFOE) or wild-type littermates
(WT), and expression of the endothelial cell genes TIE-1 (A) and PECAM-1
(B) was quantitated in developing fat pads. Values represent means ± SE for
4–7 independent experiments at each time point (*P < 0.05 relative to WT).
not in line with observations in human cells and that requires additional investigation. Several studies have documented that HGF and VEGF have similar efficacy in stimulating endothelial cell proliferation, migration, and tubule formation (12, 22, 24). Thus the greater secretion of HGF from 3T3-F442A preadipocytes and human adipose tissue suggests that HGF is a principal angiogenic factor in adipose tissue.

siRNA constructs were used to silence HGF gene expression in 3T3-F442A preadipocytes, resulting in a significant reduction in HGF protein secretion. HGF knockdown had no effect on the ability of the cells to differentiate into mature adipocytes in vitro. However, there was a significant reduction in EPC migration to medium conditioned by 3T3-F442A preadipocytes lacking HGF, establishing a role for HGF in preadipocyte-regulated angiogenesis at the level of endothelial cell chemotaxis. Our in vitro findings are in agreement with the recent report of Saiki et al. (21) in which silencing of HGF in 3T3-L1 adipocytes suppresses the ability of the cells to stimulate human umbilical vein endothelial cell tubule formation by 61% compared with control siRNA-treated cells (21).

In the current study, we quantitated endothelial cell recruitment into developing fat pads by measuring expression of the endothelial cell genes TIE-1 and PECAM-1. Neels et al. (16) have previously shown that endothelial cell mRNA in developing fat pads correlates with histological evidence of endothelial cells and formation of new microvasculature. We demonstrate that cultured 3T3-F442A preadipocytes do not express TIE-1 and PECAM-1; thus, the presence of TIE-1 and PECAM-1 mRNA in the developing fat pad is the result of endothelial cell recruitment. We detected low levels of endothelial cell mRNA in developing fat pads as soon as 24 h following injection, and that expression significantly increased by 72 h. Histological examination of the developing fat pad shows that, at 72 h postinjection, endothelial cells are sprouting from established vessels and associating with the fascia surrounding the injected cell mass. Thus measures of endothelial cell mRNA reflect endothelial cells that are attached to or have migrated just inside the fascia, when the fat pad is removed from the mouse. Knockdown of HGF secretion from 3T3-F442A preadipocytes before injection resulted in a significant reduction in endothelial cell gene expression in the developing fat pad and less evidence of endothelial cell staining in the tissue surrounding the injected preadipocytes. In combination with our in vitro observations of reduced EPC migration to medium conditioned by 3T3-F442A cells with HGF silencing, these in vivo data strongly support a role for HGF in neovascularization of developing adipose tissue.

We also tested the hypothesis that elevated HGF would accelerate neovascularization. For this experiment, 3T3-F442A preadipocytes were injected under the skin of HGF-overexpressing transgenic mice in which HGF mRNA is elevated 3- to 50-fold, depending on the tissue examined (23). Endothelial cell migration into 3T3-F442A fat pads was increased significantly in the presence of elevated HGF at 72 and 144 h postinjection of the preadipocytes. However, it is important to note that HGF in this model is elevated in the tissue surrounding the injected cells. Therefore, the HGF-activated endothelial cells migrated in the developing fat pad in response to a chemotactic signal other than HGF. Interestingly, endothelial cell migration in the 3T3-F442A preadipocyte mass appears greater when injected under the skin of wild-type C57BL/6J mice (Fig. 8A) than when injected under the skin of BALB/c nude mice. One explanation for this difference may be the presence of mature adipose tissue under the skin of the C57BL/6J mice, which promotes and supports angiogenesis to a greater extent than the muscle tissue upon which the 3T3-F442A cells rest under the skin of the BALB/c mice. Overall, our findings with HGF overexpression compliment our knockdown studies, and together both experiments strongly support a role for HGF in regulating adipose tissue vascular development.

Angiogenesis and adipogenesis are interdependent events in adipose tissue growth (4, 9, 10), and we hypothesized that HGF has a central role in coordinating both processes. We found that differentiation of 3T3-F442A preadipocytes in vitro was not
altered by HGF knockdown or treatment with the hormone, ruling out a direct effect of HGF to promote preadipocyte differentiation. However, HGF could influence preadipocyte differentiation by regulating endothelial cell migration in the developing fat pad. Using a dorsal skinfold chamber for fat pad development, Fukumura et al. (7) found that blocking angiogenesis with an anti-VEGF receptor antibody impaired differentiation of 3T3-F442A preadipocytes when assessed at 21 days postcell implantation. Thus we hypothesized that silencing HGF expression in preadipocytes and impairing endothelial cell migration in the developing fat pad might slow 3T3-F442A preadipocyte differentiation. However, we found instead that markers of adipocyte differentiation were not different between fat pads with and without HGF gene silencing. Furthermore, in developing fat pads from HGF-overexpressing mice, there was also no difference in adipocyte differentiation markers compared with that in fat pads from wild-type mice at 72 h, despite an early (48 h), transient increase in C/EBPα and PPARγ expression. Therefore, our findings suggest that preadipocyte-endothelial cell interactions are not required for initiation of preadipocyte differentiation, which is more likely regulated by such signals as insulin-like growth factor I and/or insulin. Furthermore, although the findings of Fukumura et al. (7) support the notion of an interaction between endothelial cells and preadipocytes that promotes preadipocyte differentiation, this work does not provide insight into the timing of such an interaction. Thus it may be that paracrine factors from endothelial cells are important at later time points in the differentiation process. Future experiments with a detailed time course will be needed to fully investigate this possibility.

Several limitations of our study require mention. HGF silencing in 3T3-F442A preadipocytes was achieved by electroporation of siRNA in the cells. Because of the transient nature of HGF knockdown achieved with this technique, we were unable to examine time points later than 72 h postinjection in a reliable manner. Future experiments using stable lentiviral-mediated knockdown of HGF in 3T3-F442A preadipocytes will eliminate this problem. Differences in the number of preadipocytes that survive implantation is an important additional consideration in evaluating the extent of fat pad development, especially at later time points. Future experiments using preadipocytes within a collagen gel placed under the skin (5) will allow for more precise quantitation of recovered cells and their extent of differentiation.

In summary, our data support a role for HGF in adipose tissue angiogenesis. We show that silencing of HGF expression impairs the ability of developing fat pads to recruit endothelial cells for neovascularization and that excess HGF accelerates endothelial cell migration in the fat pad. Increased endothelial cell migration in developing fat pads in the presence of elevated HGF appears to accelerate early differentiation of the injected preadipocytes. Understanding the role of HGF in regulating adipose tissue angiogenesis may provide insight into a possible target to inhibit expansion of adipose tissue and obesity.

REFERENCES
20. Saiki A, Watanabe F, Murano T, Miyashita Y, Shirai K. Hepatocyte growth factor secreted by cultured adipocytes promotes tube forma-

GRANTS
This work was supported by grants from the American Diabetes Association (7-03-RA-12), National Heart, Lung, and Blood Institute (HL-077688-04), and the Veterans Affairs. L. N. Bell was supported in part by the Indiana University Diabetes and Obesity Research Training Program (DK-064466).

