






Fig. 2. Representative images and densitometric analysis of
tyrosine hydroxylase (TH; A), phenylethanolamine N-methyl-
transferase (PNMT; B), and dopamine �-hydroxylase (D�H; C)
mRNA levels in the adrenal medulla of normal rats, diabetic
control rats, and D-hypo or D-hyper rats. Values are means �
SE, expressed as relative optical density (ROD). *P � 0.05 vs.
normal, †P � 0.05 vs. diabetic, ‡P � 0.05 vs. D-hypo, and
§P � 0.05 vs. D-hyper.
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Brain and Pituitary Levels of MR, GR, CRH, and
POMC mRNA

MR mRNA levels were increased (P � 0.001 to P � 0.05)
in all limbic regions examined [CA1/2, CA3, and CA4 fields of
hippocampus, and dentate gyrus (DG)] in all three diabetic
groups compared with normal rats (Fig. 3). Conversely, hip-
pocampal GR mRNA levels did not differ (Table 3). Levels of
GR mRNA in the hypothalamic PVN and anterior pituitary,
CRH mRNA in the PVN, and POMC mRNA in the anterior
and intermediate lobes of the pituitary also did not differ
between groups.

DISCUSSION

The present study aimed to identify a number of the molec-
ular adaptations in the sympathoadrenal system and HPA axis
underlying 1) the defective epinephrine, norepinephrine, and
corticosterone responses to hypoglycemia in untreated diabetic
rats and 2) the further impairment of epinephrine counterregu-
lation in diabetic rats exposed to recurrent hypoglycemia. We
have demonstrated for the first time that, in diabetic rats,
defects in epinephrine counterregulation are associated with

reduced adrenal expression of TH mRNA. Further blunting of
epinephrine counterregulation after recurrent hypoglycemia is
not only associated with decreases in TH mRNA but also
reduced PNMT mRNA. In the brain, hippocampal MR mRNA
levels were elevated in all diabetic groups compared with
normal rats. Despite the differences in hippocampal MR
mRNA, hippocampal GR mRNA, PVN GR and CRH mRNA,
and pituitary GR and POMC mRNA levels did not differ.
Because mRNA and protein levels for MR (2), GR (2, 38),
CRH (50), and POMC (37) in these areas are closely corre-
lated, we suggest that the diminished corticosterone responses

Table 2. Densitometric analysis of GR mRNA
levels in rat adrenal glands

Normal
(n � 4)

Diabetic
(n � 9)

D-Hypo
(n � 7)

D-Hyper
(n � 7)

Adrenal cortex 0.63�0.04 0.61�0.04 0.61�0.06 0.62�0.05
Adrenal medulla 1.07�0.14 0.83�0.07 0.76�0.09 0.92�0.04

Values are means � SE (relative optical density). GR, glucocorticoid
receptor.

Fig. 3. Representative images and densitometric analysis of mineralocorticoid receptor (MR) mRNA levels in the hippocampus (CA1/2, CA3, and CA4 fields)
and dentate gyrus (DG) of normal rats, diabetic control rats, and D-hypo or D-hyper rats. Values are means � SE, expressed as ROD. *P � 0.05 vs. normal,
and **P � 0.001 vs. normal.

Table 3. Densitometric analysis of mRNA levels in rat
hippocampus, PVN, and pituitary gland

Normal
(n � 6)

Diabetic
(n � 9)

D-Hypo
(n � 7)

D-Hyper
(n � 7)

GR in hippocampus
CA1/2 2.80�0.11 2.97�0.18 2.99�0.18 3.52�0.29
CA3 1.45�0.14 1.68�0.13 1.79�0.07 1.81�0.10
CA4 1.51�0.14 1.68�0.12 1.77�0.07 1.81�0.13
DG 3.22�0.18 3.75�0.20 3.69�0.16 3.87�0.25

PVN
CRH 4.7�0.2 4.2�0.5 5.1�0.5 5.6�0.8
GR 2.7�0.1 2.5�0.2 2.9�0.2 2.7�0.2

Pituitary
Anterior lobe

POMC 2.60�0.42 2.45�0.36 2.56�0.43 2.59�0.35
GR 3.1�0.2 3.0�0.1 3.1�0.3 3.4�0.2

Intermediate lobe
POMC 0.233�0.044 0.206�0.035 0.219�0.051 0.235�0.034

Values are means � SE (relative optical density). PVN, paraventricular
nucleus; CRH, corticotropin-releasing hormone; DG, dentate gyrus; POMC,
proopiomelanocortin.
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to hypoglycemia in untreated diabetic rats (7, 29) are not due
to altered basal expression of these receptors and neuropeptides
in the hippocampus, PVN, and pituitary.

Previously, we demonstrated that epinephrine responses to
hypoglycemia are markedly impaired in rats that had been
diabetic for 3 wk (29). Diabetic rats in the current study were
treated identically to those in our earlier study. However,
instead of undergoing hypoglycemic clamps for determination
of counterregulatory responses, they were euthanized for anal-
ysis of adaptations in the sympathoadrenal system and HPA
axis. The present data suggest that the blunted epinephrine
responses in diabetic rats may be due to defects in adrenal
catecholamine synthesis, particularly at the rate-limiting step
catalyzed by TH. Although we did not measure TH protein
levels or enzyme activities, others have shown in rats that
exposure to chronic treatment regimens, such as cold (1),
repeated immobilization (48), and nicotine treatment (56),
lasting from 5 to 14 days induces similar changes in TH
mRNA, protein, and enzyme activity. Thus it is likely that, in
3-wk-diabetic rats, the decreases in TH mRNA were accom-
panied by reductions in TH protein and enzyme activities. It is
important to note, however, that TH mRNA was also reduced
in diabetic rats exposed to recurrent hyperinsulinemia with
hyperglycemia (hereafter referred to as recurrent hyperinsulin-
emia). In our earlier study, these animals exhibited fully
normalized epinephrine responses to hypoglycemia (29). We
cannot rule out that the improved epinephrine responses after
the comparatively shorter 4 days of recurrent hyperinsulinemia
were due to increases in catecholamine-synthesizing enzyme
activities or adaptations in other aspects of catecholamine
synthesis, secretion, or degradation.

When diabetic rats in our earlier study underwent repeated
hypoglycemia, epinephrine responses became further impaired
(29). Here, an identical regimen of recurrent hypoglycemia was
not only associated with reduced TH mRNA but also with a
40% decrease in PNMT mRNA. These data suggest that the
further epinephrine defect after repeated hypoglycemia was
related to a specific defect in the norepinephrine-to-epinephrine
conversion pathway. Paradoxically, recurrent hypoglycemia
increased mRNA levels of the norepinephrine-synthesizing
enzyme D�H. In response to immobilization stress, it has been
shown that PNMT mRNA increases within 5 min, whereas
D�H mRNA requires multiple exposures to be induced (47).
These data raise the possibility that the opposite changes in
PNMT and D�H mRNA were in part due to differences in the
time courses of activation and inhibition of the biosynthesis of
these enzymes. Previously, we observed fully normalized nor-
epinephrine counterregulation in diabetic rats exposed to iden-
tical recurrent hypoglycemia (29). It is unlikely that the im-
proved responses were solely related to the enhanced expres-
sion of D�H, since norepinephrine counterregulation was also
restored in diabetic rats exposed to repeated hyperinsulinemia
(29) that showed unaltered D�H mRNA levels. In humans, the
adrenal medulla appears to be the primary source of norepi-
nephrine released during hypoglycemia (19). However, in rats,
the peripheral sympathetic nerve terminals can contribute 50%
(31) to nearly all (40, 57) of the plasma norepinephrine. It may
be that, at least in our diabetic rats, the norepinephrine defect
in untreated animals and the improved responses after repeated
insulin administration were partially due to peripheral sympa-
thetic adaptations.

The mechanisms underlying the reduced TH mRNA levels
in diabetes and the decreased PNMT mRNA levels after
repeated hypoglycemia are not known. In bovine adrenomed-
ullary cells, Stachowiak et al. (54) demonstrated an effect of
moderate depletion of cellular catecholamine content to in-
crease PNMT mRNA levels. However, when catecholamine
concentrations were decreased by 50%, PNMT mRNA
dropped to 50% of baseline levels. Although we did not
measure adrenal catecholamine levels, others have shown in
rats that hypoglycemia can reduce adrenal epinephrine content
by 70% (57). These data suggest that the decrease in PNMT
mRNA after recurrent hypoglycemia in diabetic rats may have
been due at least in part to depletion of chromaffin cell
catecholamine content. However, they also raise the possibility
that the reduced PNMT, and perhaps TH, mRNA levels were
the result, rather than the cause, of the blunted epinephrine
responses. In type 1 diabetic humans with defective epineph-
rine counterregulation, adrenal epinephrine stores are reduced
(17), suggesting that depletion of adrenal catecholamine con-
tent may indeed contribute to defective epinephrine counter-
regulation. Defects in epinephrine synthesis may therefore only
be one aspect of impaired epinephrine counterregulation.
Changes in other aspects of adrenal function, such as catechol-
amine content or even degradation, cannot be ruled out. Ini-
tially, we hypothesized that the decreases in PNMT and TH
mRNA might be due to reduced glucocorticoid-mediated stim-
ulation of PNMT (22, 30) and TH (55) synthesis. However,
because adrenomedullary GR mRNA levels did not differ
among the groups, and changes in GR mRNA are usually
accompanied by similar changes in GR protein or binding
capacity (20, 21, 53), this does not appear to have been the
case.

Pituitary-adrenal function is dysregulated in diabetic rats (7,
8, 29). We have shown that after both 1 wk (7, 8) and 3 wk (29)
of diabetes, morning plasma ACTH and corticosterone levels
are elevated compared with normal rats. In contrast, cortico-
sterone responses to hypoglycemia are nearly absent in diabetic
animals (7, 29). The pituitary-adrenal defects appear to at least
in part be due to a lack of insulin, since they are nearly
normalized in diabetic rats exposed to repeated hyperinsulin-
emia, both with and without concurrent hypoglycemia (29). In
the current study, hippocampal MR mRNA levels were ele-
vated in all diabetic groups, indicating that diabetes, irrespec-
tive of glucose or insulin levels, increases hippocampal MR
mRNA. The increases in mRNA were likely accompanied by
increases in protein, since hippocampal MR mRNA and pro-
tein levels are closely correlated (2). These data confirmed our
previous findings of elevated hippocampal MR mRNA in
1-wk-diabetic rats (7, 8). Despite the differences in MR mRNA
between normal and diabetic rats, it does not appear that the
increases in MR were responsible for the impaired corticoste-
rone responses to hypoglycemia in untreated diabetic animals.
This is because MR mRNA was also elevated in diabetic rats
exposed to recurrent hyperinsulinemia, which showed nearly
normalized corticosterone responses (29). Hippocampal GR
mRNA and PVN and pituitary CRH, POMC, and GR mRNA
levels did not differ among the groups. As with hippocampal
MR, mRNA and protein levels of CRH (50), POMC (37), and
GR (2, 38) in these areas are closely correlated. Thus the
defective corticosterone responses to hypoglycemia in diabetic
rats also do not appear to be due to altered basal expression of
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these neuropeptides and receptors. In 1-wk-diabetic rats that
were euthanized in the morning, we previously observed in-
creased PVN CRH mRNA levels (7, 8). The lack of differences
in CRH mRNA in the present study was likely due to the fact
that, unlike 1-wk-diabetic rats, the current animals were eutha-
nized in the afternoon, near the circadian peak of HPA activity
(12). In diabetes, the diurnal rhythm of HPA activity is dis-
rupted (6, 9, 51, 58). As a result, differences in HPA function
between normal and diabetic rats are known to be more
pronounced in the morning, during the nadir (6, 9, 51, 58).

Our data suggest that the defective epinephrine responses to
hypoglycemia in diabetes and after recurrent hypoglycemia
and the concurrent decreases in TH and PNMT mRNA are not
the result of changes in the brain and pituitary parameters we
examined. Other central nervous system areas are known to
play important roles in glucose sensing and counterregulatory
responses (5, 46). The ventromedial hypothalamus (VMH)
appears to be a key hypoglycemia-sensing region that is im-
portant in eliciting counterregulatory hormone responses (5).
In addition, there is evidence to suggest that alterations in the
VMH or its efferent pathways may contribute to impaired
counterregulation after chronic hypoglycemia (4). In the hind-
brain, specific catecholaminergic neurons respond to 2-deoxy-
glucose glucoprivation (46) and show decreased responsive-
ness after repeated glucoprivation (49). Adaptations in the
VMH and hindbrain catecholaminergic sites may therefore
contribute to the epinephrine, TH, and PNMT defects in
diabetes and after recurrent hypoglycemia.

In summary, we report for the first time that the blunted
epinephrine responses to hypoglycemia in untreated diabetic
rats and diabetic rats exposed to recurrent hypoglycemia are
associated with specific defects in adrenal catecholamine-syn-
thesizing enzyme expression. Impaired epinephrine responses
in diabetic rats are related to reduced expression of TH mRNA,
whereas the further epinephrine defect after recurrent hypogly-
cemia is associated with decreases in both TH and PNMT
mRNA. As for the blunted corticosterone response to hypo-
glycemia in untreated diabetes, the data suggest that the defect
is not due to alterations in basal expression of MR or GR in the
hippocampus or of CRH, POMC, or GR in the PVN and
pituitary. We conclude that impaired epinephrine counterregu-
lation in diabetes and after recurrent hypoglycemia may in part
be due to defective adrenal catecholamine synthesis. Investi-
gation of the mechanisms underlying the defects in TH and
PNMT expression may aid in the development of treatments to
improve epinephrine counterregulation in type 1 diabetic hu-
mans.
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