Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α

LAURA FERNÁNDEZ-CELEMÍN, NEVI PASKO, VALÉRIE BLOMART, AND JEAN-PAUL THISSEN
Unité de Diabétologie et Nutrition, Université catholique de Louvain, B-1200 Brussels, Belgium

Received 7 February 2002; accepted in final form 20 June 2002

Fernández-Celemín, Laura, Nevi Pasko, Valérie Blomart, and Jean-Paul Thissen. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α. Am J Physiol Endocrinol Metab 283:E1279–E1290, 2002.—The role of TNF-α in muscle catabolism is well established, but little is known about the mechanisms of its catabolic action. One possibility could be that TNF-α impairs the production of local growth factors like IGF-I. The aim of this study was to investigate whether TNF-α can directly inhibit IGF-I gene and protein expression in muscle. First, we investigated whether the acute inflammation induced by endotoxin injection changes IGF-I and TNF-α mRNA in rat tibialis anterior muscle. Endotoxin rapidly increased TNF-α mRNA (7-fold at 1 h, P < 0.001) and later decreased IGF-I mRNA (–73% at 12 h, P < 0.001). Furthermore, in a model of C2C12 myotubes, TNF-α strongly inhibited IGF-I mRNA and protein (–73 and –47% after 72 h, P < 0.001 and P < 0.01, respectively). Other proinflammatory cytokines failed to inhibit IGF-I mRNA. The effect of TNF-α on IGF-I mRNA was not mediated by nitric oxide, and the activation of NF-κB was insufficient to inhibit IGF-I expression. Taken together, our data suggest that TNF-α induced in muscle after LPS injection can locally inhibit IGF-I expression. The inhibition of muscle IGF-I production could contribute to the catabolic effect of TNF-α in skeletal muscle; lipopolysaccharide; C2C12 cells

A DECREASE IN LEAN BODY MASS is commonly observed in pathological conditions such as sepsis, cancer, AIDS, or chronic inflammatory diseases. This change in body composition may lead to functional alterations that increase mortality and hamper a patient’s rehabilitation. The loss of lean mass is mainly due to a loss of skeletal muscle (4). The mechanisms of muscle catabolism involve complex interactions among several mediators and remain nowadays only partially unraveled. Hence, a better understanding of these interactions is important for developing successful therapies able to prevent the decline in lean body mass and reduce morbidity and mortality.

Tumor necrosis factor (TNF)-α is a proinflammatory cytokine that is essential for a successful response against invading pathogens (19, 41, 43). On the other hand, TNF-α is considered to play a major role in muscle catabolism. First, circulating levels of TNF-α are markedly increased in catabolic states (3). Second, enhanced protein degradation and muscle loss have been observed in TNF-α-transgenic animals (29) after chronic administration of the cytokine (23, 54) or in animals bearing TNF-α-producing tumors (12). Furthermore, administration of anti-TNF-α antibodies or of TNF-α-soluble receptor attenuates the catabolic reaction (28, 42).

Catabolic actions of TNF-α in skeletal muscle can be exerted in different ways. One possibility is that TNF-α acts directly on skeletal muscle to induce muscle catabolism. Indeed, TNF-α has been reported to inhibit protein synthesis and myogenesis in myoblasts (22, 25, 34). Recent observations indicate that TNF-α can also stimulate the proteolysis of myosin heavy chains in C2C12 myotubes by activating the ubiquitin-proteasome pathway (36). Besides, TNF-α increases apoptotic cell death in skeletal muscle (39). Alternatively, TNF-α can act indirectly to stimulate skeletal muscle catabolism by modifying hormones that regulate protein turnover (15, 53), by increasing the production of other cytokines (53), or by inducing anorexia (54).

Insulin-like growth factor I (IGF-I) is an anabolic growth factor responsible for normal growth and development (18). Autocrine IGF-I production has been demonstrated to play a crucial role in muscle growth (47, 56). In skeletal muscle, IGF-I acts as an anabolic growth factor stimulating protein synthesis (5) as well as proliferation and differentiation of satellite cells (18). IGF-I has also been reported to suppress proteolysis (21, 27) and to inhibit the ubiquitin-proteasome system (11). Finally, IGF-I exerts antiapoptotic effects in muscle, favoring the survival of differentiated cells (35).

Sepsis and endotoxin (LPS) injection, a classical model of acute catabolism, are associated with an increase in circulating TNF-α levels (3) and a decrease in muscle IGF-I (16). Taking into consideration the opposite actions of these two molecules in the control of muscle mass, we hypothesized that the catabolic effects of TNF-α might result from a direct inhibition of
muscle IGF-I gene expression. The aims of this study were first to assess whether the acute inflammation caused by LPS is associated with a reduction in muscle IGF-I mRNA and an increase in muscle TNF-α mRNA and second to investigate the role of TNF-α in the decrease of muscle IGF-I caused by LPS.

MATERIALS AND METHODS

Materials. For in vivo experiments, lipopolysaccharide of Escherichia coli (LPS, serotype 0127:B8) was obtained from Sigma Chemical (St. Louis, MO) and was diluted to 1 mg/ml in sterile, endotoxin-free saline. For in vitro experiments, recombinant murine TNF-α, interleukin-1β, and interferon-γ (rmTNF-α, rmIL-1β, rmIFN-γ) and recombinant rat IL-6 were purchased through R&D Systems (Abingdon, UK). NUNC® plastic dishes were purchased from NUNC (Roskilde, Denmark), and Dulbecco’s modified Eagle’s medium (DMEM), fetal calf serum, horse serum (lot: 3010240D), nonessential amino acids, and l-glutamine were purchased from Gibco-BRL Life Technologies (Paisley, UK).

In vivo experiment. Male Wistar rats (Katholieke Universiteit Leuven, Leuven, Belgium) 8–9 wk of age (218 ± 9.2 g; mean ± SD) were maintained for 1 wk under standardized conditions of light (12:12-h light-dark cycle) and temperature (6:00 PM and 9:00 AM, whereas access to water was unlimited). The seeding density used was 0.4 million cells per 24-well plate. Undifferentiated cells were grown in DMEM throughout the experiments. Each well was supplemented with 10% fetal calf serum, 1% penicillin-streptomycin, and 0.4 mg/ml fungizone. The aqueous phase containing the RNA was retained, and RNA was precipitated with isopropanol. The pellet was washed with 70% ethanol, dried, resuspended in diethylpyrocarbonate-treated water, and stored at −70°C. The concentration of total RNA was determined by hybridization with specific probes.

In vitro experiment. C2C12 cell line were obtained from American Type Culture Collection (Manassas, VA). The seeding density used was 0.4 million cells per 24-well plate. The culture was provided with fresh Medium 12600 (2×) (Roskilde, Denmark), and Dulbecco’s Modified Eagle’s Medium (DMEM), fetal calf serum, horse serum (lot: 3010240D), nonessential amino acids, and l-glutamine were purchased from Gibco-BRL Life Technologies (Paisley, UK). C2C12 cells were anesthetized with a mixture of Ketalar/Rompum (75:15 mg/kg body wt ip), and the extensor digitorum longus (EDL) muscles were gently dissected with intact tendons and mounted on supports at approximate resting length. Individual muscles were preincubated for 30 min and then incubated for 3 h in 20 ml of oxygenated Krebs-Ringer bicarbonate solution at 25°C in the presence or absence of LPS (10 μg/ml).

RNA extraction and Northern blot analysis. Twenty micrograms of total RNA from each sample were denatured in formaldehyde-MOPS and subjected to electrophoresis on 1% agarose gels. Homogeneity of the loading was assessed by UV transillumination of the gels after staining with ethidium bromide. The RNA was transferred to nylon membranes (Hybond N; Amersham, Buckinghamshire, UK) by capillary overnight blotting, and levels of IGF-I, IGF-II, or TNF-α mRNA were determined by hybridization with specific probes. For IGF-I, a 23-mer 18S oligonucleotide end-labeled with [α-32P]dATP by T4 polynucleotide kinase was performed as described in RNA extraction and Northern blot analysis. For IGF-II, a 275-bp RSA1 rat IGF-II exon 3 (coding region of IGF-II/mRNA) was ligated into the pBS(+)-Stratagene and linearized with EcoR I. Specific 32p-labeled RNA antisense probes were generated by polymerase with uridine 5′-[α-32P]triphosphate (800 Ci/mmol; Amersham) by use of T7 (IGF-I) or T3 (IGF-II) RNA polymerase. Levels of TNF-α mRNA were determined by hybridization with a randomly primed 32p-dCTP-labeled TNF-α probe (p6r TNF-α) encompassing the rat TNF-α coding sequence (amino acids 44–231) (40). To verify uniform loading, control hybridization was performed with a 23-mer 18S oligonucleotide end-labeled with adenosine 5′-[α-32P]triphosphate by T4 polynucleotide kinase (Amersham).

For IGF-I and IGF-II, blots were prehybridized for 3–4 h at 65°C in buffer containing NaCl (0.8 M), Na phosphate (50 mM), EDTA (0.5 mM), Denhardt’s (2 g/l each of bovine serum albumin, Ficoll, and polyvinylpyrrolidone), salmon sperm DNA (200 μg/ml), and formamide (50%). For TNF-α, blots were prehybridized for 4 h at 50°C in buffer containing NaCl (0.75 M), Na citrate (75 mM), SDS (0.25%), Denhardt’s (2 g/l each of bovine serum albumin, Ficoll, and polyvinylpyrrolidone), salmon sperm DNA (200 μg/ml), and formamide (50%). After prehybridization, the radiolabeled RNA probe or cDNA probe (1 × 106 cpn/ml of buffer) for 16–18 h in a shaking water bath at 65°C (for IGF-I or IGF-II) and at 50°C (for TNF-α). After hybridization, blots were washed several times. For IGF-I or IGF-II, blots were washed rapidly once with 300 ml of washing buffer (in mM: 20 Na
Supernatants were then collected and stored at room temperature and then more extensively twice for 30 min in a shaking waterbath at 70°C. For TNF-α, blots were washed twice for 20 min with 300 ml of washing buffer I (0.3 M NaCl, 30 mM Na citrate, 0.1% SDS) at room temperature and then twice with 300 ml of washing buffer II (0.03 M NaCl, 3 M Na citrate M, 0.25% SDS) for 20 min in a shaking water bath at 55°C. Membranes were finally exposed to XAR-5 Kodak film for several hours to several days at -80°C. The mRNA levels were quantified by densitometric scanning of the hybridization signal (LKB Ultrascan XL laser densitometry; LKB, Bromma, Sweden) with the use of software (Gel Scan, Pharmacia & Upjohn, Brussels, Belgium). IGF-I mRNA transcripts, as visualized by Northern blot analysis, presented a complex picture consisting of a large (7.5 kb) transcript, a group of transcripts ranging from 0.8 to 1.2 kb, and two additional minor transcripts of 1.7 and 4.7 kb. Because all of these transcripts may potentially be translated into IGF-I precursors, we performed a densitometric analysis of the four bands visible on the blot. For IGF-II, we considered 1.5- to 2.2-kb transcripts and a 4.6-kb transcript for the densitometric analysis. Densitometric values were normalized by assigning to the mRNA levels observed after 96 h postdifferentiation (D4, day on which experiments were initiated) an arbitrary value of 100%.

Cytoplasmic and nuclear extracts. After cells were washed twice with ice-cold PBS and harvested in 500 µl of cold buffer A (10 mM HEPES-KOH, pH 7.9, 5% glycerol, 100 mM NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 1 µg/ml leupeptin, and 2 µg/ml aprotinin), cytoplasmic extracts were prepared by subjecting the cells to three cycles of freeze-thawing. Supernatants were then collected after samples were centrifuged for 10 s in a microcentrifuge. Nuclear extracts were prepared by resuspending the pellets in cold buffer B (20 mM HEPES-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 1 µg/ml leupeptin, and 2 µg/ml aprotinin). The resuspended pellets were mixed and incubated at 4°C for 20 min and centrifuged for 10 min in a microcentrifuge at 4°C. Supernatants were then collected and stored at -80°C. Protein content of the cytoplasmic and nuclear extracts was determined using Bradford’s protein assay (Bio-Rad, Munich, Germany).

Electrophoretic mobility shift assay. For the electrophoretic mobility shift assay (EMSA), preannealed, chromatography-purified, double-stranded oligonucleotides containing the consensus DNA-binding sequence for NF-κB (5′-TCGAGGGCT-TTGAGATCCGATC-3′) were radiolabeled with [γ-32P]-ATP, and EMSA was performed as previously described (48). Briefly, 10 µg of nuclear proteins (prepared as described) were incubated with radiolabeled DNA probe for 20 min at room temperature and then electrophoresed on a 5% polyacrylamide gel. To verify the specificity of the binding reaction, an excess of unlabeled oligonucleotide was incubated with the nuclear extracts for 5 min at room temperature before the addition of the radiolabeled probe and then incubated for 20 min. For supershift, 4 µl (0.8 µg/ml) of anti-p50- or anti-p65-specific polyclonal antibody for the NF-κB subunits were incubated with the extract samples for 5 min before the addition of the labeled probe. NF-κB p65 and p50 antibodies are, respectively, rabbit and goat affinity-purified polyclonal antibodies raised against a peptide mapping the carboxy terminus of NF-κB p65 or p50 of human origin and identical to the corresponding mouse sequence (Santa Cruz Biotechnology, Santa Cruz, CA). Gels were dried and exposed for 20 h to a Hyperfilm MP (Amersham).

Cytokine kinase activity. Myogenic differentiation was assessed biochemically on cytoplasmic extracts (prepared as described) via determination of muscle creatine kinase (CK) activity with a SYNCHRON LX Systems reagent kit (Beckman Coulter) following manufacturer’s instructions. Specific CK activity was calculated after correction for total protein.

Nitrite determination. Nitrite (NO₂⁻) is a stable end product used extensively as an indicator of NO production by cultured cells. In our experimental conditions, nitrite accumulation was assayed by the Griess reaction, according to the method described previously (20). Briefly, 400 µl of cell culture medium were mixed with three times the amount of Griess reagent (1% sulfanilamide, 0.1% naphthylenediamine, 2.5% H₃PO₄). Samples were incubated at room temperature for 10 min, and absorbance was subsequently read at 543 nm by a spectrophotometer. Nitrite concentrations were calculated compared with a sodium nitrite (NaNO₂) standard curve.

End point PCR of TNF-α receptors. For PCR assay, 1 µg of total RNA from C₉C₁₂ myotubes was reverse transcribed into cDNA in the presence of 1× RT-PCR buffer (Superscript kit no. 18053-07, Life Technologies), 4.44 mM of dNTPs (no. 1581295, Roche Diagnostics), 88.8 pM of random hexamers (Clinical Molecular Biology Unit, St Luc Hospital, Brussels, Belgium), 11 mM DTT, and 50 U of superscript reverse transcriptase (Superscript Kit, Life Technologies) per reaction. The final volume was 18 µl, and cDNA synthesis was performed in the GeneAmp PCR system 2400 (Perkin-Elmer, Foster City, CA) as follows: 22°C for 10 min, 42°C for 1 h, and 99°C for 5 min.

End point PCR amplification was then carried out on 3 µl of the cDNA product, with 1× PCR buffer (Perkin-Elmer kit N808-0161), 1 mM MgCl₂, 0.8 µM dNTP (no. 1581295; Roche Diagnostics), 0.5 mM of specific primers, and 3.5 U reaction of Taq DNA polymerase (PWO-expand; Roche Diagnostics); the final volume was 50 µl. End point PCR was performed in the GeneAmp PCR system 2400 (Perkin-Elmer) as follows: 94°C for 1 min followed by 45 cycles [94°C for 1 min; 60°C (p60) and 58°C (p50) for 2 min; 72°C for 3 min]. The primer pairs used to amplify TNF-α R60 and Rp80 cDNA (GenBank nos. M59377 and M59378, respectively) are shown in Table 1. Negative control reverse transcription and amplification reactions were also run without RNA input or cDNA input. A portion (20 µl) of RT-PCR product was electrophoresed in 1% agarose gel in 1× Tris-borate-EDTA buffer (89 mM Tris base, 89 mM boric acid, 200 mM EDTA), to-

Table 1. Summary of primer sequences

<table>
<thead>
<tr>
<th>Primer</th>
<th>Direction</th>
<th>Sequence</th>
<th>Amplicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1</td>
<td>Forward</td>
<td>5′-gge cga agt cta ctc cat ttg tag gg-3′</td>
<td>371 bp</td>
</tr>
<tr>
<td>TNFR2</td>
<td>Reverse</td>
<td>5′-cat cca cca cag cat aca gaa tca cg gg-3′</td>
<td>636 bp</td>
</tr>
</tbody>
</table>

TNFR1 and -2, TNF-α receptors 1 and 2, respectively.
to display symptoms of infection (gastric dilatation, decreased mobility, piloerection) until 12 h. Furthermore, LPS injection resulted in a progressive inhibition of tibialis anterior IGF-I gene expression that became significant after 6 and 12 h (61% and 73% reduction, respectively, \( P < 0.001 \) vs. time-matched saline group; Fig. 1B). This reduction was not due to the anorectic effect of LPS, as LPS-injected and saline-treated animals fasted throughout the day of the experiment.

Although LPS significantly decreased IGF-I gene expression in skeletal muscle, it did not seem to affect IGF-II expression (data not shown).

Muscle TNF-\( \alpha \) and IGF-I mRNA levels in saline-injected animals were not different from those in non-injected controls (time 0 h), indicating that the injection procedure had no effect by itself on TNF-\( \alpha \) and IGF-I gene expression (Fig. 1).

In vitro experiments with EDL muscles incubated in the presence or absence of LPS demonstrated that LPS is capable of rapidly inducing TNF-\( \alpha \) gene expression in skeletal muscle (2-fold increase vs. control, \( P < 0.001 \); Fig. 2).

**RESULTS**

**Regulation of muscle expression of IGF-I and TNF-\( \alpha \) by LPS.** In a first step, we investigated the changes produced by LPS injection in muscle TNF-\( \alpha \) mRNA and IGF-I mRNA.

Basal TNF-\( \alpha \) gene expression was very low in tibialis anterior muscle of intact animals. LPS administration induced a rapid peak of TNF-\( \alpha \) mRNA between 1 and 3 h, with a 7-fold increase at 1 and 2 h and a 5.5-fold increase at 3 h (\( P < 0.001 \) vs. time-matched saline group). Afterward, TNF-\( \alpha \) transcripts decreased to reach basal values by 12 h (Fig. 1A). Animals continued

**RESULTS**

**Regulation of muscle expression of IGF-I and TNF-\( \alpha \) by LPS.** In a first step, we investigated the changes produced by LPS injection in muscle TNF-\( \alpha \) mRNA and IGF-I mRNA.

Basal TNF-\( \alpha \) gene expression was very low in tibialis anterior muscle of intact animals. LPS administration induced a rapid peak of TNF-\( \alpha \) mRNA between 1 and 3 h, with a 7-fold increase at 1 and 2 h and a 5.5-fold increase at 3 h (\( P < 0.001 \) vs. time-matched saline group). Afterward, TNF-\( \alpha \) transcripts decreased to reach basal values by 12 h (Fig. 1A). Animals continued

**RESULTS**

**Regulation of muscle expression of IGF-I and TNF-\( \alpha \) by LPS.** In a first step, we investigated the changes produced by LPS injection in muscle TNF-\( \alpha \) mRNA and IGF-I mRNA.

Basal TNF-\( \alpha \) gene expression was very low in tibialis anterior muscle of intact animals. LPS administration induced a rapid peak of TNF-\( \alpha \) mRNA between 1 and 3 h, with a 7-fold increase at 1 and 2 h and a 5.5-fold increase at 3 h (\( P < 0.001 \) vs. time-matched saline group). Afterward, TNF-\( \alpha \) transcripts decreased to reach basal values by 12 h (Fig. 1A). Animals continued
with differentiation (34). Because all of these parameters were stable between day 4 and day 8 of differentiation, experimental procedures were performed from day 4.

**Inhibition of IGF-I gene and protein expression by TNF-α**. Because in vivo results suggested a causal relationship between the increase in TNF-α expression and the reduction of IGF-I mRNA levels, we began by investigating the effect of this proinflammatory cytokine on the IGF-I gene expression in the C2C12 myotubes. In this model, TNF-α has been reported to exert a catabolic action leading to decrease in MHC content (37).

Four-day-differentiated myotubes were incubated for 2, 4, 6, 8, or 10 h in the presence or absence of TNF-α (5 ng/ml). TNF-α resulted in a progressive decrease of IGF-I mRNA levels to 48% of the time-matched control values at 8 h and to 62% at 10 h (Fig. 3A). A longer exposure of myotubes to TNF-α emphasized its inhibitory effect, further diminishing IGF-I mRNA levels by 66% at 24 h (P < 0.05), 69% at 48 h (P < 0.001), and 73% at 72 h (P < 0.001) vs. time-matched control expression (Fig. 3B). As expected from the decrease in IGF-I mRNA levels, exposure of myotubes to TNF-α for 72 h reduced IGF-I medium concentrations by 47% (control: 1.55 ± 0.25 ng/ml vs. TNF-α: 0.82 ± 0.08 ng/ml; P < 0.01, n = 6).

TNF-α decreased IGF-I mRNA levels in a dose-dependent manner. Incubation of 4-day-differentiated myotubes with 1 ng/ml of the cytokine decreased IGF-I mRNA by 27% compared with control values (P < 0.05). A dose of 5 ng/ml, which was used throughout the experiments unless otherwise specified in the figure legends, resulted in a 70% reduction of IGF-I transcripts (P < 0.001 vs. control). Higher doses of TNF-α (≥50 ng/ml) did not inhibit further IGF-I gene expression (Fig. 4 and data not shown).

Because mature C2C12 myotubes continue to express IGF-II, we studied whether TNF-α was able to cause IGF-II gene expression to decrease. Exposure of myotubes to 5 ng/ml TNF-α for 24, 48, or 72 h did not affect IGF-II transcripts, suggesting that TNF-α effect on IGF-I mRNA did not result from a generalized inhibitory effect on gene expression (Fig. 5).

**Reversibility and relation to differentiation state of the inhibition of IGF-I gene expression by TNF-α**. The inhibition of IGF-I mRNA levels induced by 24-h exposure to TNF-α (5 ng/ml) was totally reversed by removal of the cytokine from the conditioned medium. Indeed, IGF-I mRNA values were restored to normal 24 h after TNF-α was removed (Fig. 6). This result indirectly indicates that the TNF-α inhibitory effect on IGF-I mRNA is independent of a cytotoxic effect of the cytokine.
After 72 h of TNF-α treatment (5 ng/ml), myobye CK activity was slightly but significantly decreased ($P < 0.01$ vs. control; Fig. 7), suggesting a modest inhibitory effect of TNF-α on cell differentiation.

**Effect of other proinflammatory cytokines and LPS on IGF-I gene expression.** To determine whether other proinflammatory cytokines might be involved in the decrease of muscle IGF-I mRNA observed in vivo in response to LPS, we tested the effect of IL-1β, IL-6, and IFN-γ (5 ng/ml) on 4-day-differentiated myotubes. Although, as expected, TNF-α decreased IGF-I mRNA levels at all times tested ($P < 0.05$ at 24 h, $P < 0.01$ at 48 h, and $P < 0.001$ at 72 h vs. time-matched control group), none of the other cytokines (IL-1β, IL-6, or IFN-γ) modified consistently the IGF-I mRNA levels in muscle cells (Fig. 8A). All together, these observations indicate that, of all the cytokines tested, TNF-α is the only one to significantly inhibit IGF-I mRNA.

Because LPS injection resulted in decreased IGF-I mRNA levels in vivo, we studied whether LPS could directly influence IGF-I mRNA in differentiated myotubes. After 24 h of exposure to LPS (2 μg/ml), IGF-I gene expression was slightly decreased, albeit in a nonsignificant way (Fig. 8B).

**Effect of the combination of TNF-α and IFN-γ on IGF-I gene expression.** Because IFN-γ can potentiate some TNF-α actions (50), we investigated the effect of the combination of these two cytokines on IGF-I gene expression in C2C12 myotubes. Four-day-differentiated myotubes were treated for 24 h with TNF-α (3 ng/ml) and IFN-γ (5 ng/ml) alone or in combination. As expected, IFN-γ did not significantly modify IGF-I mRNA (29% decrease, $P > 0.05$), whereas TNF-α alone caused a 74% decrease of IGF-I mRNA levels ($P < 0.01$ vs. control). When myotubes were challenged with the combination of TNF-α and IFN-γ, the IGF-I mRNA levels were further decreased to 90% of the control values ($P < 0.001$ vs. control and $P < 0.05$ vs. TNF-α alone), suggesting more an additive action of both cytokines than a potentiation (Fig. 9).

**Expression of TNF-α receptors on C2C12 myotubes.** To assess the nature of TNF-α receptor isoforms expressed in C2C12 myotubes, total cDNA was prepared and amplified for transcripts encoding the different TNF-α receptor isoforms p60 (TNFR1) and p80 (TNFR2). Both types of TNF-α receptors (TNFR1 and TNFR2) were found to be expressed at the mRNA level in this cell line (Fig. 10).

**Stimulation of NO production by TNF-α and IFN-γ.** Inducible nitric oxide synthase (iNOS) plays an important role in the transduction of TNF-α signal in catabolic states (7). Hence, we examined the possibility that TNF-α inhibition of the IGF-I gene would be mediated through NO production. Myotubes were stimulated for 24 h with TNF-α (3 ng/ml), IFN-γ (5 ng/ml), or their combination. Neither TNF-α nor IFN-γ exposure increased nitrite production in C2C12 myo-

---

**Fig. 4.** Dose-dependent effect of TNF-α on IGF-I mRNA in C2C12 myotubes. After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h with 1, 5, or 10 ng/ml of TNF-α. At each point, cells were collected and total RNA was extracted. Total RNA (20 μg) was electrophoresed in each lane, and Northern blot analysis was performed as indicated in MATERIALS AND METHODS. Top: autoradiography; bottom: densitometric analysis. Data are expressed as means ± SE of 3 separate experiments. *$P < 0.05$ and ***$P < 0.001$ vs. control (0 ng/ml TNF-α).

**Fig. 5.** Effect of TNF-α on IGF-I mRNA in C2C12 myotubes. After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h (D5), 48 h (D6), or 72 h (D7) with TNF-α (5 ng/ml). At each time point, cells were collected, and total RNA was extracted. Total RNA (20 μg) was electrophoresed in each lane, and Northern blot analysis was performed as indicated in MATERIALS AND METHODS. Top: autoradiography; bottom: densitometric analysis. Data are expressed as means ± SE of 3 separate experiments.
IL-1β activated NF-κB but only TNF-α inhibited IGF-I gene expression, we can conclude that NF-κB activation by TNF-α is insufficient to inhibit IGF-I gene expression.

**DISCUSSION**

Our results show that LPS injection induces a rapid increase of TNF-α expression and a later inhibition of IGF-I expression in skeletal muscle, suggesting the possibility of a causal relationship between these two changes. This hypothesis was confirmed in a model of differentiated C2C12 myotubes, where we observed that TNF-α inhibits IGF-I gene and protein expression.

In our in vivo model, TNF-α mRNA levels are induced rapidly and transiently in tibialis anterior after LPS administration. This indicates that the stimulation of TNF-α gene expression by LPS is not restricted to diaphragm tissue, about which it was originally described (46), but is probably a generalized response of skeletal muscles. These observations also support the hypothesis that the catabolic action of TNF-α in skeletal muscle is exerted in an autocrine/paracrine way. Our data do not allow us to identify the nature of the cells expressing TNF-α in skeletal muscle. Although the possibility exists that TNF-α is produced, at least partially, by the myocytes (15, 44), in our model of C2C12 myotubes, LPS failed to induce significant TNF-α expression (data not shown). In contrast, TNF-α expression was stimulated in whole muscles incubated in the presence of LPS. From these observations, we speculate that cells other than myocytes, probably immune cells, are the main contributor of TNF-α production in muscles exposed to LPS.

The mechanisms for increased TNF-α expression in skeletal muscle after LPS injection are still unknown. This effect could result from a direct effect of LPS on skeletal muscle, or it could be mediated by circulating TNF-α produced principally by the liver in response to LPS. The first possibility is strongly supported by our observation that LPS can act directly on muscle to increase TNF-α expression. On the other hand, the second possibility is suggested by the fact that TNF-α...
induces its own expression in vitro, both in immune cells and in myocytes (1, 15, 53, 57). However, the concomitant induction of TNF-α in liver and muscle after LPS injection favors a major direct role of LPS in the induction of muscle TNF-α.

LPS injection caused a decrease in muscle IGF-I mRNA levels. This is in agreement with previous work showing that LPS injection decreases immunoreactive IGF-I and IGF-I mRNA in gastrocnemius muscle (31). Because gastrocnemius is a mixed-fiber muscle and tibialis anterior a fast-fiber muscle, the decrease in IGF-I gene expression after LPS does not seem to be restricted to a specific type of muscle.

The time course of TNF-α induction and IGF-I inhibition caused by LPS in skeletal muscle suggests a causal relationship between these two changes. This hypothesis is strengthened by the parallelism with the liver situation, where LPS increases TNF-α and de-

Fig. 8. Effect of different proinflammatory cytokines and LPS on IGF-I mRNA in C2C12 myotubes. After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h (D5), 48 h (D6), or 72 h (D7) with 5 ng/ml of TNF-α, IL-1β, IL-6, or IFN-γ (A) or for 24 h (D5) with 2 μg/ml of LPS (B). At each time point, cells were collected, and total RNA was extracted. Total RNA (20 μg) was electrophoresed in each lane, and Northern blot analysis was performed as indicated in MATERIALS AND METHODS. Top: autoradiography; bottom: densitometric analysis. Data are expressed as means ± SE of 3 separate experiments. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. time-matched control.

Fig. 9. Effect of TNF-α and IFN-γ on IGF-I mRNA in C2C12 myotubes. After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h (D5) with TNF-α (3 ng/ml), IFN-γ (5 ng/ml), or their combination. Cells were collected, and total RNA was extracted. Total RNA (20 μg) was electrophoresed in each lane, and Northern blot analysis was performed as indicated in MATERIALS AND METHODS. Top: autoradiography; bottom: densitometric analysis. Data are expressed as means ± SE of 3 separate experiments. **P < 0.01, ***P < 0.001 vs. control, and *P < 0.05 vs. TNF-α alone.

Fig. 10. Presence of TNF-α receptor isoforms in C2C12 myotubes. After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h in the presence or absence of TNF-α (5 ng/ml). Then, myotube total RNA was extracted, and RT-PCR was performed on total RNA for the expression of TNF-α receptors TNFR1 (p60) and TNFR2 (p80), as described in MATERIALS AND METHODS. Positive controls included mouse spleen and WEG-1 cells. Amplicon size (MW) markers are indicated in the left margin; p60 and p80 amplicon sizes are indicated in the right margin.
tiated C2C12 myotubes. The use of differentiated myotubes inhibits IGF-I gene and protein expression in differentiated muscle cells in vitro. We show here that TNF-α/H9251 effects of TNF-α/H9251 is the same in both tissues. Therefore, the decrease in muscle IGF-I expression might be secondary to the muscle TNF-α induction by LPS.

To demonstrate this hypothesis, we assessed the effects of TNF-α on IGF-I gene and protein expression in muscle cells in vitro. We show here that TNF-α inhibits IGF-I gene and protein expression in differentiated C2C12 myotubes. The use of differentiated myotubes rather than myoblasts strengthens the relevance of our observations, as it is more likely for the same effects to be found in mature muscle (32).

Although muscle IGF-I mRNA concentrations are decreased in vivo by LPS and in vitro by TNF-α, IGF-II mRNA is not affected by these stimuli. Because IGFs share many biological properties, one could question the physiological consequences on muscle mass of a local IGF-I decline. However, several lines of evidence indicate that the respective actions of IGF-I and IGF-II on the muscle are not “interchangeable.” igf1-Null mice present a generalized skeletal muscle hypoplasia that occurs despite normal IGF-II expression (8). Furthermore, although igf1-transgenic mice are characterized by an increase in muscle growth, igf2-transgenic mice have normal muscle mass and body growth (18, 49). Taken together, these data support a different role for IGF-I and IGF-II regarding the control of muscle mass and imply that the decline in muscle IGF-I production can impair muscle mass despite normal IGF-II expression.

Although TNF-α can lead to cell death in different cell systems, this was not the case in our model. First, the morphological aspect of myotubes exposed for 72 h to TNF-α was similar to that of controls. Second, the decrease in IGF-I expression caused by TNF-α was rapidly reversed by removal of the cytokine from the culture medium, thus confirming that IGF-I inhibition is not secondary to cell death. Moreover, several research groups have reported that C2C12 myotubes are resistant to the apoptotic action of TNF-α, even after 72 h of incubation (37). Although induction of TNF-soluble receptors can block TNF-α action, this seems not to be the case in our model, as the TNF-α inhibitory effect on IGF-I was sustained for ≥72 h.

The inhibition of IGF-I mRNA by TNF-α could result from dedifferentiation of myotubes caused by the cytokine (34). Indeed, TNF-α clearly impairs the differentiation of myoblasts into myotubes by inhibiting several myogenic markers (25). In the present study, TNF-α treatment significantly decreased CK activity, a marker of differentiation, but this occurred only after 72 h of treatment. Others have reported similar late effects of TNF-α on the myogenic differentiation of

---

**Table 2. Cytokine induction of nitrite production by C2C12 myotubes**

<table>
<thead>
<tr>
<th>NO Concentration, μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL 0.6 ± 0.0</td>
</tr>
<tr>
<td>TNF-α 0.6 ± 0.2</td>
</tr>
<tr>
<td>IFN-γ 0.5 ± 0.0</td>
</tr>
<tr>
<td>TNF-α + IFN-γ 27.1 ± 2.5*</td>
</tr>
</tbody>
</table>

Results are expressed as total nitrite produced per plate (means ± SE of 3 separate experiments). After 4 days of differentiation (D4), C2C12 myotubes were incubated for 24 h (D5) with TNF-α (3 ng/ml), IFN-γ (5 ng/ml), or their combination. *P < 0.001 vs. all groups.
myotubes (34). However, we cannot exclude the possibility that changes in CK activity detected at 72 h reflect early changes in steady-state levels of CK mRNA. These observations suggest that the rapid inhibitory action of TNF-α on IGF-I gene expression is probably independent of myotube dedifferentiation, although this phenomenon could be involved at later stages.

The TNF-α concentration capable of causing a decrease in IGF-I expression can be considered as “physiological,” i.e., in the range of those found in inflammatory states or after LPS injection (3, 38) and close to the affinity of the TNF-α receptor for its ligand (30). Besides, when possible paracrine interaction between the cytokine-producing cells and myocytes is considered, local concentrations could be even higher than those found in circulation after LPS injection or in inflammatory states. In addition, the kinetics of the IGF-I mRNA decrease after TNF-α treatment of myotubes are close to those observed in vivo after LPS injection. All of these observations plead for a direct autocrine/paracrine effect of TNF-α, produced by LPS, on IGF-I in skeletal muscle.

Whereas TNF-α is not the sole cytokine capable of inducing a catabolic state (38) and whereas some actions of TNF-α have been shown to be mediated by other cytokines (2), we studied whether IL-1β, IL-6, or IFN-γ were capable of inhibiting IGF-I expression. All of these cytokines fail to decrease IGF-I mRNA levels significantly in C2C12 myotubes. However, our data allow us to demonstrate the responsiveness of C2C12 myotubes to IL-1β and IFN-γ, as the former activated NF-κB and the latter potentiated the TNF-α effect on nitrite production. A similar conclusion can be drawn for IL-6, as C2C12 myotube sensitivity to IL-6 has recently been reported (2). Our data suggest that the TNF-α effect on IGF-I expression is not mediated by IL-1, IL-6, or IFN-γ. Nevertheless, the mechanism by which TNF-α exerts its inhibitory effect on IGF-I expression might still be an indirect one, needing other mediators or a combination of different cytokines (15, 57).

LPS administration did not result in a significant inhibition of IGF-I expression in differentiated myotubes. This apparent insensitivity might result from the absence of Toll-like receptors capable of LPS recognition in C2C12 myotubes. However, this is unlikely, as other biological responses to LPS have been described in the same model (24). Therefore, the lack of effect of LPS is most likely due to its failure to induce significant TNF-α expression in C2C12 myotubes.

Because most of the TNF-α catabolic actions are mediated through TNFR1, we searched for the presence of this receptor in C2C12 myotubes. This cell line actually expresses both TNF-α receptor isoforms, TNFR1 and TNFR2. We cannot, therefore, affirm the nature of the TNF-α receptor isoform whose activation causes IGF-I gene expression to decrease.

Although NO induction seems to play a role in some catabolic effects of TNF-α, the role of the NO pathway in the IGF-I gene inhibition by TNF-α can be excluded, as TNF-α alone fails to increase NO production in C2C12 myotubes. This is not surprising, because previous work showed that iNOS activation in C2C12 myocytes required stimulation by a combination of cytokines, among which IFN-γ appears to be essential (55). This seems to be also the case in our model, where only the combination of TNF-α and IFN-γ resulted in a dramatic NO production, as assessed by nitrite concentration in the medium. The essential role of IFN-γ in inducing NO production might result from its ability to upregulate TNF-α receptor expression (9) or from a synergy operated at the transcriptional level (10). A synergistic action between TNF-α and IFN-γ was not observed on IGF-I mRNA. Both cytokines together decreased IGF-I gene expression more than each one did alone, supporting an additive effect rather than a potentiation.

Activation of NF-κB is a crucial step for many TNF-α actions (51). Our data show that TNF-α indeed activates NF-κB in myotubes, confirming the results reported by Li et al. (37). Nevertheless, our observations extend their findings by showing that NF-κB is composed mainly of p50 and p65 subunits, which constitute the main heterodimer activated in the inflammatory response (51). The rapid activation of NF-κB by TNF-α might suggest that this transcription factor plays a role in the inhibition of IGF-I expression caused by TNF-α. However, IL-1β also activates NF-κB in C2C12 myotubes, similarly to TNF-α but without inhibiting IGF-I expression. Activation of NF-κB is therefore not sufficient to inhibit IGF-I gene expression. Taken together, our data indicate that TNF-α induced by LPS in skeletal muscle may exert its catabolic effects in an autocrine/paracrine manner by reducing IGF-I gene and protein expression.

We gratefully acknowledge Josiane Verniers, Pascale Lause, Ivo Vanderheyden, and Prof. Marianne Philippe for expert technical assistance.

This work was supported by grants from the Fund for Scientific Medical Research (Belgium), the Fonds Spéciaux de Recherche (Université Catholique de Louvain), and the Danone Institute (Brussels).

REFERENCES


