Endocrinology and Metabolism

Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist

Natasa Petrovic, Irina G. Shabalina, James A. Timmons, Barbara Cannon, Jan Nedergaard


Most physiologically induced examples of recruitment of brown adipose tissue (BAT) occur as a consequence of chronic sympathetic stimulation (norepinephrine release within the tissue). However, in some physiological contexts (e.g., prenatal and prehibernation recruitment), this pathway is functionally contraindicated. Thus a nonsympathetically mediated mechanism of BAT recruitment must exist. Here we have tested whether a PPARγ activation pathway could competently recruit BAT, independently of sympathetic stimulation. We continuously treated primary cultures of mouse brown (pre)adipocytes with the potent peroxisome proliferator-activated receptor-γ (PPARγ) agonist rosiglitazone. In rosiglitazone-treated cultures, morphological signs of adipose differentiation and expression levels of the general adipogenic marker aP2 were manifested much earlier than in control cultures. Importantly, in the presence of the PPARγ agonist the brown adipocyte phenotype was significantly enhanced: UCP1 was expressed even in the absence of norepinephrine, and PPARα expression and norepinephrine-induced PGC-1α mRNA levels were significantly increased. However, the augmented levels of PPARα could not explain the brown-fat promoting effect of rosiglitazone, as this effect was still evident in PPARα-null cells. In continuously rosiglitazone-treated brown adipocytes, mitochondriogenesis, an essential part of BAT recruitment, was significantly enhanced. Most importantly, these mitochondria were capable of thermogenesis, as rosiglitazone-treated brown adipocytes responded to the addition of norepinephrine with a large increase in oxygen consumption. This thermogenic response was not observable in rosiglitazone-treated brown adipocytes originating from UCP1-ablated mice; hence, it was UCP1 dependent. Thus the PPARγ pathway represents an alternative, potent, and fully competent mechanism for BAT recruitment, which may be the cellular explanation for the enigmatic recruitment in prehibernation and prenatal states.

  • brown fat
  • rosiglitazone
  • norepinephrine
  • mitochondria
  • thermogenesis
  • peroxisome proliferator-activated receptor-γ
View Full Text