Endocrinology and Metabolism

Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose

T. Brundin, J. Wahren


The contribution of the splanchnic tissues to the initial 2-h rise in whole body energy expenditure after ingestion of glucose or fructose was examined in healthy subjects. Indirect calorimetry and catheter techniques were employed to determine pulmonary gas exchange, cardiac output, splanchnic blood flow, splanchnic oxygen uptake, and blood temperatures before and for 2 h after ingestion of 75 g of either fructose or glucose in water solution or of water only. Fructose ingestion was found to increase total oxygen uptake by an average of 9.5% above basal levels; the corresponding increase for glucose was 8.8% and for water only 2.5%. The respiratory exchange ratio increased from 0.84 in the basal state to 0.97 at 45 min after fructose ingestion and rose gradually after glucose to 0.86 after 120 min. The average 2-h thermic effect, expressed as percent of ingested energy, was 5.0% for fructose and 3.7% for glucose (not significant). Splanchnic oxygen consumption did not increase measurably after ingestion of either fructose or glucose. The arterial concentration of lactate rose, arterial pH fell, and PCO2 remained essentially unchanged after fructose ingestion. Glucose, but not fructose, elicited increases in cardiac output (28%) and splanchnic blood flow (56%). Fructose, but not glucose, increased arterial blood temperature significantly. It is concluded that both fructose and glucose-induced thermogenesis occurs exclusively in extrasplanchnic tissues. Compared with glucose, fructose ingestion is accompanied by a more marked rise in CO2 production, possibly reflecting an increased extrasplanchnic oxidation of lactate and an accumulation of heat in the body.